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Fully integrated VR Technologies

The SoC Side of the Story - the FIVR

[Burton et.al APEC ’14] [Kurd et.al ISSCC ’14]

Faster state transitions by 25%, higher performance per watt

Overall idle power slashed by 20x, battery life improvement by > 50%

BOM savings helped all segments
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Fully integrated VR Technologies

The SoC Side of the Story - the FIVR

Segment Key Challenge What helped the most
Servers Bump Imax Iin reduction
Laptops Board Area, Iccmax High bandwidth/frequency

Desktops Performance High bandwidth
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Fully integrated VR Technologies

The Platform Perspective
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Fully integrated VR Technologies

The Platform Perspective

SoCs inherently require several voltage rails

Input rail consolidation simplifies power delivery significantlyPSoC 2018 Rinkle Jain 4 / 24



Fully integrated VR Technologies

Loadline improvements

Translates to battery life, area and/or performance benefits
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Fully integrated VR Technologies

MIM-based Switched Capacitor VR

[R.Jain et al. JSSC ’14]

[R.Jain et al. JSSC ’15]

Regulation, few ns response, low area overhead, 880mA/mm2

PSoC 2018 Rinkle Jain 6 / 24



Fully integrated VR Technologies

Proposed Control Law for Adaptive Widths

fsw < FthW = bW ′

a implies higher efficiency at W’ (W’=W/n)

fsw is a good indicator of low voltage and light load conditions
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Enabling DVFS

Current density & domain area-power trends
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Enabling DVFS

Current density & domain area-power trends
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Enabling DVFS

Buck converter with thin-film magnetics

H. Krishnamurthy et al. JSSC 2017
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Enabling DVFS

Current density & domain area-power trends
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14nm Graphics Processor
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Enabling DVFS

Switched Capacitor Voltage RegulatorSwitched Capacitor VR (SCVR)

APR friendly design, 6 distributed tiles with area overhead of 1.1% (680umx520um)

PSoC 2018 Rinkle Jain 12 / 24



Basic 
Power Gate 
(PG)

RF

RF

RF

RF

PG

VIN

VOUT

PG

Modified EU: Digital LDO  (DLDO)

RF

RF

RF

RF

PGPG Driver

Ctrl Controller

DLDO PG

Driver

PPGa

PPGd

SPG

VIN

VOUT

PG

VUDDAC

Digital PG
Driver

PPG

{ {Area overhead: 0.5%

Digital LDO demonstrated in S.Kim et al. JSSC ’15

PSoC 2018 Rinkle Jain 13 / 24



Distributed Implementation

Adaptive Width Simulations

Fast and stable adaptation
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Independent V/F Domains at SoC Level

SCVR   
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EU Turbo Performance Gain
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Retentive Sleep: Leakage Savings
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Conclusions
Complete 14nm GPU features energy efficiency techniques

Hybrid IVR (DLDO + SCVR) for independent V/F domains

• Within GPU: EU turbo provides up to 68% performance gain, 
50% EU area reduction, or 32% energy savings

• SoC Level: SCVR enables up to 77% GPU energy savings

Additional DLDO usages

• Retentive sleep: Reduces EU leakage by 63%

• VMIN per block: Up to 2.4% EU VMIN reduction
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Summary and Conclusion

Summary

Power delivery: VRs inside SoC is fully integrated(>100MHz, >2:1)

Buck for mainstream SoC, SC for relatively small rails

Reduced area => less L, C; worse interconnects with every node; efficiency
reduces

Need: Better passives utilization, current density, die stacking

Power management: Inductor less approach for down-scalability

Distributed, APR-friendly designs desirable for SoC integration and wide
adoption

Need down-scalable high current density/die stacking for point-of-load
VRs!

Need battery/source-to-SoC VR integration(3-5 MHz bandwidth,
discrete passives)
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Thank you for your attention!

PSoC 2018 Rinkle Jain 23 / 24



Acknowledgement

Vaibhav Vaidya

Tri Hyunh

Chung-Ching Peng

George Matthew

Carlos tokunaga

Don Gardener

Kaladhar Radhakrishnan

Paul Fischer

Kevin O’brien

Muhammad Khellah

Jim Tschanz

Ravi Mahajan

Jonathan Douglas

Takao Oshita

This research was, in part, funded by the U.S. Government (DARPA). The views and conclusions

contained in this document are those of the authors and should not be interpreted as representing

the official policies, either expressed or implied, of the U.S. Government.

PSoC 2018 Rinkle Jain 24 / 24


	Fully integrated VR Technologies
	Enabling DVFS
	Enabling DVFS
	Distributed Implementation
	Silicon Measurements
	Summary and Conclusion

