Many voltage domains enabling an energy
efficient graphics processor in 14nm
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o Faster state transitions by 25%, higher performance per watt
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o Overall idle power slashed by 20x, battery life improvement by > 50%
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New execution unit (EU) has a dedicated integrated voltage regulator
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Hybrid IVR (DLDO + SCVR) for independent V/F domains

e Within GPU: EU turbo provides up to 68% performance gain,
50% EU area reduction, or 32% energy savings

 SoC Level: SCVR enables up to 77% GPU energy savings

Additional DLDO usages
» Retentive sleep: Reduces EU leakage by 63%

* Vun Per block: Up to 2.4% EU V,, reduction
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Power delivery: VRs inside SoC is fully integrated(>100MHz, >2:1)
o Buck for mainstream SoC, SC for relatively small rails

o Reduced area => less L, C; worse interconnects with every node; efficiency
reduces

o Need: Better passives utilization, current density, die stacking
Power management: Inductor less approach for down-scalability

o Distributed, APR-friendly designs desirable for SoC integration and wide
adoption

Need down-scalable high current density/die stacking for point-of-load
VRs!

Need battery/source-to-SoC VR integration(3-5 MHz bandwidth,
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