

PwrSoC 2018: IVR Driven Energy Savings in SoCs
Tim Phillips, COO
Oct 19, 2018

Outline

- The need for and challenges of full power management integration
- Empower Resonant IVR (RIVRTM) technology
- How RIVR technology speed and accuracy drive significant system energy savings

The Need for Power Management Integration

- Moore's Law drives SoC power challenge
 - Logic di/dt increases, metal thins
 - Reduced operating voltage squeezes voltage margin
 - Voltage rail proliferation: IP blocks and islands demand independent voltage rails
 - Multi-channel VRs (PMICs) now supply 20-40+ rails; are consuming massive PCB space
 - Package & PCB rail routing & filtering complex, area intensive, and expensive
- Traditional Solutions have run out of steam ...
 - Power Deliver Network (PDN) far too slow for modern di/dt → forces significant voltage margining
 - PMIC area/cost/speed/efficiency tradeoff at limit

Smart Phone Motherboard

Existing power management uses large board area and both sides of the PCB

The Challenges of Integrated Voltage Regulators (IVR)

Area of Passive Components

- Inductor size presents significant challenge in adoption & scalability of IVRs
- Traditional Buck architecture requires very high frequency to shrink L's enough
 - High Freq → low efficiency, high switching noise
- Switch cap architectures can require very large caps and display low granularity and/or efficiency

High Efficiency with Low Noise and Low EMI

- LDO's, while low noise, require low dropout, and are an inefficient architecture when multiple rails with different voltages are required
- Most switching regulators switch at peak currents and cause high input noise, radiated EMI, and minority carrier substrate injection when body diodes conduct

Cost

Special SoC processing or added package layers are typically required

Empower Resonant Integrated Voltage Regulators (RIVRTM)

- Full component integration
 - All rails can be fully integrated
 - Industry's smallest passives
 - No discrete components, no special process steps or packaging
- Highest System Efficiency
 - Soft-switching → low loss
 - Tiny Inductors → low DCR
 - 1,000x faster DVS → lower SoC loss
- Ultra-wide Bandwidth
 - SoC voltage accuracy 5x better
- Low Noise & EMI
 - Soft-switching, no diode conduction

A Fully Integrable Power Solution for All SoCs

PMIC Solutions are typically larger than the SoC they power

RIVRTM Enables Significant Energy Savings

- Three main sources of Significant Energy Savings
 - 1) Wide-bandwidth regulation enables tight voltage accuracy
 - 2) Wide-bandwidth regulation enables on-demand DVFS
 - 3) 2-Stage power conversion enables performance and energy optimization for each stage

 With 2-stage conversion and wide-bandwidth second stage response, VR efficiency is no longer a useful metric of system energy savings

Benefit 1: Voltage Accuracy

RIVR vs. PMIC Test Platform

- Provides apples-to-apples comparison of RIVR vs. PMIC performance
 - "SoC" in 16nm silicon, FcBGA package:
 - On-chip programmable, emulated highspeed, high-current load & MOS caps
 - High-speed, fine resolution on-chip transient test circuits w/ readback
 - Full integrated wide-bandwidth IVR
 - Fully programmable through GUI
 - Test Board configured to either power SoC load directly -OR- power IVR:
 - PMIC can directly power the SoC load
 - 5V \rightarrow 1.8V PMU to power the IVR in the SoC

The Power Delivery Network (PDN) Problem

- External PMIC solutions have significant impedance between their regulated output (V_{PMIC}) and the SoC's Core (V_{Core})
- As nodes shrink, currents change much faster
- This current change through the PDN causes significant voltage excursions with long recovery times

PMIC Voltage Transient Response @ PCB Bulk Caps

PMIC Voltage Transient Response @ the SoC Core

- Typically 10-20% accuracy
- Empower Test Board
 - ~ 150mV dip
 - 5μs recovery time
 - DC drop in Blue curve includes PCB sense resistor of $10m\Omega$

1-5 MHz

RIVR Solves the PDN Problem

RIVR PDN

RIVR lowers the impedance to the SoC over a wide frequency band

RIVR Solves the PDN Problem

- RIVR delivers very tight voltage accuracy at the core
 - Very small voltage dip
 - Ultra-fast recovery
 - Ability for nearly zero DC drop

Measured on Empower
Test Board

Transient: $0.5A \rightarrow 2.5A$ in 10ns

RIVR Accuracy Reduces Voltage Guard-Band

Guard-band problem gets worse with Reduced V_{core} Voltage

Example: 0.85V, $100mV \Delta V = 23\%$ Power Savings

Power Savings =
$$1 - \frac{(V_{IVR})^2}{(V_{PMIC})^2}$$

Benefit 2: Ultra-Fast DVFS

Empower Enables Fast Dynamic Voltage Scaling

>1,000x faster power delivery translates up to 50% power savings

Today's Solution

- Existing power mgmt ICs (PMIC) are too slow to react to voltage changes of the system
- Significant power is wasted with the excess voltage ($P \sim V^2$)

Empower Ultra-Fast DVS

- Nearly instantaneous voltage delivery eliminates the excess voltage & wasted power
- >1,000x faster voltage delivery vs existing PMICs
- 30-50% power savings achieved

Empower RIVR vs. PMIC DVS

On-demand power state changes deliver much lower power loss and higher performance

Yellow: RIVR Voltage Blue: PMIC Voltage

An Example Opportunity for Ultra-Fast DVS

Cache misses drive processor idle time at full power with a slow VR

- Assumptions:
 - 1.6 GHz processor clock
 - 0.5% L3 cache miss rate
- Every 200th clock cycle is a 180ns cache miss wait cycle at full power
 - CPU work time: 199 cycles / 1.6 GHz = 124ns
 - CPU wait time = 180ns
 - Work Duty Cycle: 41%

A wide-bandwidth VR can take advantage of memory latency

Source: www.anandtech.com

RIVRTM DVFS Energy Savings Potential During Cache Miss

Utilize Ultra-Fast DVS saves energy during cache misses ($P \propto F * V^2$)

Model Example Assumptions:

- CPU Fmax = 1.6 GHz, 1.0 clock cycle per instruction
- CPU Fmin = 0.55 / 0.75 * 1.6 GHz = 1.24 GHz
- Cache miss rate = 0.5%
- Memory access time = 180ns (includes DVS down)
- Empower DVS up & down time of 7ns

		Operating Segment			SoC
Metric	VR Type	Mem Wait Cycle	DVFS (Up & Down)	CPU Cycle	Total per Cycle
Time (ns)	RIVR	173	7+7	124	311
	PMIC	180	0	124	304
Avg Voltage (V)	RIVR	0.58	0.67	0.75	0.65
	PMIC	0.85	0.85	0.85	0.85
Current (A)	RIVR	4.49	5.14	7.50	5.9
	PMIC	8.5	8.5	8.5	8.5
Avg Power (W)	RIVR	2.60	3.42	5.63	3.9
	PMIC	7.2	7.2	7.2	7.2
Energy (யி)	RIVR	0.45	0.05	0.70	1.20
	PMIC	1.30	0	0.90	2.20

~65% savings during wait cycle

Total System Comparison → 45% Power Savings

Stage 1 (Many VRs)

2-Stage Solution

0.85V @ 8.5A Power: 7.2W

2-Stage Benefits:

- Accurate IVR lowers SoC voltage & power
- Ultra-fast IVR reduces power during CPU wait cycles
- Each stage optimized for its own V_{out} & I_{out}

Stage 1 (Single VR)

Efficiency: 82%

1.59W

P_{Loss}:

45% Power Savings

Efficiency: 94% 0.29W

1.8V @ 2.5A Power: 4.5W

Stage 2

0.65V Avg @ 5.9A CPU: 3.85W

IVR: 0.68W

Resonant IVR (RIVRTM) Drives SoC Energy Efficiency

- Integration of RIVR directly in the SoC significantly lowers impedance to the processor core over wide frequency range
- Accuracy and speed drive significant energy savings
 - 44% total energy savings vs. PMIC exhibited
- Up to 80% power management area & component savings with up to 50% power management cost reduction can be realized
- Samples available in 16nm; being ported to other nodes
- Many customer projects underway

