Driving Wide-Bandgap Transistors To The Limits!

PwrSOC 2018, Taiwan Dr. Jef Thoné, Dr. Mike Wens

With the support of

FLANDERS INVESTMENT & TRADE

Wide bandgap is trending

APEC 2018 proceedings => 710 papers & presentations

- #SiC => 474 hits (67%)
- #GaN => 356 hits (50%)
- #IGBT => 167 hits (23%)
- #CMOS =>48 hits in (7%)
- #superjunction =>14 hits (2%)
- #DMOS => 12 hits (1.6%)

PwrSOC 2018

Is wide bandgap better?

Comparison

- In theory: yes :
 - smaller specific Rdson for GaN and SiC
 - Lower gate charge * Rdson
- In practice: depends.

Source : nexgen powersystems

confidential

Source : IEEE Power Electronics, Vol 5, No 2, june 2018

3

Power loss revisited

Power losses revisited

- Gate loss : $P_g = Q_g * V_g * f_{sw}$
- C_{oss} loss : $Pc_{oss} = C_{oss} * V_{sw}^2 * f_{sw}$
- $R_{dson} loss : P_{rds} = R_{dson} * I_{out}^2$
- Switching loss : $P_{sw} = V_{sw} * I_{out} * (t_r+t_f) * f_{sw}/2$
- (Reverse recovery loss : $P_{rr} = (I_{out} * t_a + Q_{rr}) * V_{sw} * f_{sw}$)

Manufacturer	Туре	Type no.	Configuration	Vmax [V]	lmax [A]	Rgint [Ohm]	dVgs [V]	Qg [uC]	Rdson [mOhm]	Rdson * Qg [mOhm.uC]	Coss [nF]	Coss/Qg [nF/uC]	Tr [ns]	Tf [ns]
Cree	SiC	CAS300M12BM2	Halfbridge	1200	404	3	25	1	5	5.00	2.55	2.55	68	43
Semikron	SiC	SKM350MB120SCH15	Halfbridge	1200	523	0.6	18	1.5	5.6	8.40	1.10	0.73	50	50
IXYS	Si	IXFN32N120P	single fet	1200	32	0.83	10	0.36	310	111.60	1.10	3.06	62	58
Microsemi	Si	APT28M120B2	single fet	1200	29		10	0.3	450	135.00	0.28	0.92	31	48
GaN Systems	GaN	GS66508B	single fet	650	30	1.13	5	0.0058	50	0.29	0.14	24.48	3.7	5.2
Visic	GaN	VMHB120D	halfbridge	1200	180		12	0.0096	40	0.38	0.28	29.17	4	10

PwrSOC 2018

confidential

1kHz / 600V / 100A, all Rdson normalized to 20 mOhm

Integrated Powe Management

Solutions

confidential

Integrated Powe Management

Solutions

100kHz / 600V / 100A, all Rdson normalized to 20 mOhm

confidential

Integrated Powe Management

Solutions

Conclusions

- <10kHz, there seems little value for going to SiC or GaN vs Si
- >10kHz, SiC or GaN perform similarly
- Where is the benefit ?
 - Package power density @ 1200V
 - > SiC (SKM350MB120SCH15) : 19.5 Ohm*mm² (1200V)
 - > GaN (VM40HB120D) : 125 Ohm * mm² (1200V)
 - > GaN (GS66508B) : 3 Ohm*mm² (650V)
 - > Si (APT28M120B2) : 244 Ohm*mm² (1200V)
 - No (or little) reverse recovery
 - > yielding lower switching losses
 - > Lower current spikes during switching transitions => potentially better EMI
 - Higher temperature capability for GaN and SiC

confidential

Gate switching

- A : precharge from 0 (or negative voltage) to Vth + Vdsat
 - Ideally as short as possible
- B : defines slope of Vds. In case of inductive loads pulling Vds in the right direction, miller plateau is not present (and helps the efficiency!)
- C : charge from Vth+Vdsat to full Vgs.
 - Ideally as short as possible : it is interesting to reach the steady state Rdson as fast as possible (Rdson losses)

Why Rgate ?

- Gate loss : $P_g = Q_g * V_g * f_{sw}$
 - Dissipating in the gatedriver is costly (die area) or impossible (eg lack of cooling)
 - Putting Rg keeps power outside the driver
- Gate source parasitic inductance
 - $e = L_{gs} di_{gate}/dt$
 - Either limit inductance (impossible for OTS power FETs)
 - Or dl/dt, by adding Rg
- Lack of kelvin gate connections
 - $e = L_s di_{source}/dt$
 - Slow down switching Vds at cost of power, but slower Ids change as well.

100kHz / 600V / 100A, all Rdson normalized to 20 mOhm

- In general the power devices are cooled well (liquid cooling), in contrast to the gate driver board
 - May be enclosed
 - May not have active cooling
- Pgate becomes problematic at high frequency
 - Putting Rgate keeps power external to the gate driver
 - Practical board limit 2..3 W

Benchmarking of GaN vs SiC vs Si Why Rgate ?

- For high frequency (>10kHz) driving a HV Si MOS without Rgate is too (real-estate) costly. (rule of thumb for Si predriver area : 1W/mm²)
 - Driving SiC at high frequency without Rgate is at the edge of what is commercially appealing.
 - Driving GaN at high frequency can (power wise) be done without Rgate.
- For 1.2kV GaN and SiC : in practice, gate-source inductance requires dl/dt to be limited, so they are driven with Rgate

Rgate trade-offs

- Pull-up:
 - Limit the dissipation inside the gatedriver (Pgate /2)
 - As fast as possible,
 - > limited excessive ringing of outputs/supply nodes
 - > gate-source loop inductance / ringing / overvoltage
 - Typically iterative design
- Pull-down:
 - Limit the dissipation inside the gatedriver (Pgate/2)
 - Keep the gate tied down to the source as good as possible (or negative potential) ←→ parasitic turn-on
 - For inductive loads, a non-zero pull-down may be used to control the output dV/dt, but a miller clamp is required!

Challenges in Driving GaN Gates HOW NOT TO DO IT

Main GaN advantage = Switching Speed. Excess
 Gate-Loop Inductance/Length kills performance.

- Driver Package
- PCB layout
- GaN Package
- Temperature constraints for the gate-driver

Driving GaN Gates HOW NOT TO DO IT

2. High dV/dt & low Cg/Cdg ratio = Parasitic Turn-on. Many SPMS designers have seen their first trials with GaN resulting in expensive fireworks.

Challenges in Driving GaN Gates HOW NOT TO DO IT

3. Extreme dV/dt (100V/ns and more) = problematic for Reliable Gate-Driver Operation.

4. The Delay Matching of the Gate Signals of a halfbridge circuit is crucial for its reliable operation. This requires Accurate Dead-Time Generation and HS/LS Delay Matching. Nano-second precision is required!

Challenges in Driving GaN Gates HOW NOT TO DO IT

5. Gan Vgate = ca. 4-7V. MOSfet drivers support ca. 8-20V. Accurate and Adapted Gate-Drive Voltage needed.
Overvoltage is problematic.

6. Maximize Integration by minimizing external components = Highest Power Density.

High-Speed LS GaN Gate-Driver

HOW TO DO IT RIGHT: MDCD073

- Dual Half-Bridge
- Ron_LS = 150m0hm
 No Parasitic Turn-On
- Ron_HS = 240m0hm
 => Fast Drive
- Output rise/fall-time = 500ps
- 7-2.5V operation, 4A peak
- Ultra Low Inductance Lay-Out
- 0.9mm²

High-Speed LS GaN Gate-Driver HOW TO DO IT RIGHT: MDCD073

- CoB approach for shortest gate-loop
- Nanosecond gate-drive possible
- 10x improvement over commercial drivers
- Discrete level-shifting limits dV/dt to about 20V/ns

High-Speed HS/LS GaN Gate-Driver HOW TO DO IT RIGHT: MDCD074

- Floating High-Side up to 100V
- Integrated Level-Shifters
- Integrated Bootstrap
- Integrated Charge-pump (100% duty, start-up...)

22

High-Speed HS/LS GaN Gate-Driver

HOW TO DO IT RIGHT: MDCD074

- Integrated Automatic Dead-Time
- Gate-Voltage Monitor
- Integrated floating supplies
- Buck/Boost mode
- Synchronous/Asynchronous mode

High-Speed HS/LS GaN Gate-Driver HOW TO DO IT RIGHT: MDCD074

- Gate rise/fall-time <1ns
- HS/LS propagation delay 10ns
- HS/LS propagation delay matching <1ns

24

PwrSOC 2018

High-Speed HS/LS GaN Gate-Driver

HOW TO DO IT RIGHT: MDCD074

- CoB approach for optimal gate-loop
- >100V/ns dV/dt tested!!!
- 100V floating capability
- -55°C to 175°C temperature range!

Putting it all into A MODULE HOW TO DO IT RIGHT: GaNyMAD

"Abduction of GaNyMedes" (1611)

By Pieter Paul Rubens

"Production of GaNyMAD" (2017)

By MinDCet

Putting it all into A MODULE HOW TO DO IT RIGHT: GaNyMAD

- Alu-core PCB with CoB
- Allows for optimal thermal design
- 100V/90A GaN Half-Bridge
- 26x28mm² footprint
- 14x22mm² core
- Power C & L external
- User needs to provide logic signals and don't worry about gate-drive!!!

GaNyMAD vs LM5200

Pure powerstage comparison

Peak power	100V @ 90A	80V @ 10 A
Average output power [W]	4500	400
Additional external comp.	0	12
Core area [mm ²]	308	48 + 89 (ext components)
Power density [W/mm²]	14.6	3.41
Dead-time generation	Internal	External
Propagation delay	10ns	30ns
100% duty cycle	Yes, internal chargepump	No
Cost / Pout [EURcent/W]	1	2.2
PwrSOC 2018	Confidential	28

The new GANYMAD Power Module

Functionally tested in a brand-new GANYMAD module

The new GANYMAD Power Module

System-level Impact

• Reduce # external components in the system

OLD

Improve speed

On-chip regulators, No need for external ones

NEW

The new GANYMAD Power Module

Efficiency measurements

48V to 3V3 buck mode, n_{eff} = 94.5%

48V to 12V buck mode, neff = 97.5 %

Conclusion on GaN Driving

- Getting the maximal performance out of GaN requires a custom gate-driver
- Neglecting one of the aspects (gate-loop, parasitic turn-on...) will result eventually in failure
- The optimal solution combines speed with high-drive strength
- You need to integrate the gate-driver system to cope with the high dV/dt of the output node
- A complete Module gives the user peace-of-mind and first-time right succes for integration

Challenges in SiC Driver design

- Large distance between the upper gate-source connection and the lower gate-source
 - Gate driver / PCB impedances can be well controlled <> module impedances
 - What is the module GS loop inductance, and how is it distributed ?

Fig. 1. Internal layout of the 1.2 kV module. Source: Estimation and Minimization of Power Loop Inductance in 135 kW SiC Traction Inverter,

confidential APEC Aberg et al 2018

Challenges in SiC design

- A fast gate driver does not mean a fast SiC inverter
 - Lots of parasitic inductances involved

 typically the manufacturer will
 advise to not drive it too fast...
- PCB design of the gate driver will be key
 - Keeping the gate-source loop low inductive
 - Better : integration of the predriver in the power module !

Source : CreeCGD15HB62LP Predriver board

Figure 4. Wolfspeed's high performance gate driver.

PwrS(

SiC Driver requirements

Spec :

- SiC FETS with Qg = 3uC , switching at 50kHz, dVgs = 25V
 → Pg = 3.75 W
- 12A charging current of the gate
- Propagation distortion < 20 ns (symmetric for turn-on and turn-off)

First observations:

- Pg cannot be (economically) burnt in the driver IC => external gate resistors are required.
- There is a need for miller clamping => 2 pulldown drivers are needed
 - I for gate discharge
 - 1 for miller clamping

Driving SiC gates

- Tight control of overdrive voltage is needed
 - Sensitive to oxide breakdown (Vgs << Vbd)
 - SiC acts as a voltage controlled resistor (weak saturation) (Vgs >>)
- Negative steering of gate during turn-off is required
 - Poor control of gate-source impedance (resistive and inductive) ←→ discrete GaN transistors
 - Cdg can easily cause several volts of overshoot during
 Vds transient => miller clamping is a must

Miller clamping

- Vmc = 4V
- Vlgs = 2.5V
- Vth = 2...4V ...

$$\frac{\Delta V}{L} = \frac{dI}{dt} = \frac{20A}{20ns.nH} = \frac{1V}{nH}$$

Multiphase turn-on/off?

- Rationale:
 - Keep the dV/dt under control (separate charging path)
 - speed up charging of the gate after the miller plateau to reach nominal Rdson * I² ASAP
 - Clamp the SiC gate to the source when it needs to be off.
- Combine EMI (limited dV/dt and dI/dt) control with fast turn-on/off
- Allows larger dutycycle ranges and shorter nonoverlap delays

SiC modules, future outlook

• Lamination of busbars reducing bus inductance

Source : High power, high frequency gate driver for SiC MOSFET modules, Semikron, PCIM 2016

Conclusion on SiC Driving

- Getting the maximal performance out of SiC requires a custom gate-driver
- Performance of gate driver is limited by physical assembly of the SiC module
- Future improvements:
 - Mechanical
 - Laminated power module connections
 - Laminated gate-source connections
 - Electrical
 - Integration of the gate driver inside the module

What holds the future?

Driving wide-bandgap to the limits !

- First GaN-on-SOI 100V halfbridge with integrated predrivers *
 - Tape out Oct 2018
 - First results expected in Q1 2019

Schematic cross-section of GaN-on-SOI structure, featuring buried oxide, oxide filled deep trench, local substrate contact and p-GaN HEMT devices. Picture courtesy IMEC.

Optical microscope picture of p-GaN HEMT on SOI with deep trench isolation and local substrate contact. Picture courtesy IMEC.

Floorplan of the symmetrical GaNon-SOI 32 mOhm/10A halfbridge

* SloGaN project : <u>https://www.imec-int.com/en/what-we-offer/research-portfolio/slogan</u>

PwrSOC 2018

confidential

What holds the future?

Driving wide-bandgap to the limits !

- First 650V GaN power module with RF isolation
 - First results expected in Nov 2018

What can we do for you?

Headquarters

MinDCet NV Researchpark Haasrode Romeinse Straat 10 3001 Leuven Belgium www.mindcet.com info@mindcet.com t: +32 16 40 95 28 t: +32 16 40 14 88 f: +32 16 40 83 38

