Hybrid Integrated GaN-CMOS Power Converters and High-density Modules Based on Vertical GaN Transistors

Ken Shepard

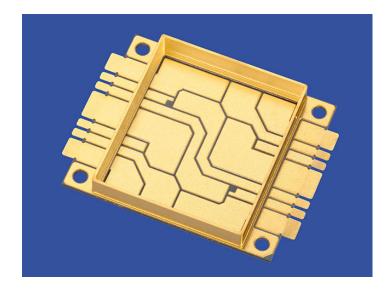
Columbia University, Ferric

Daniel Pedra, Yuhao Zhang, Min Sun, Tomas Palacios; MIT John Barth, Kevin Tien, Eyal Aklimi, Fengqi Zhang; Columbia University Steve Bedell; IBM

Outline

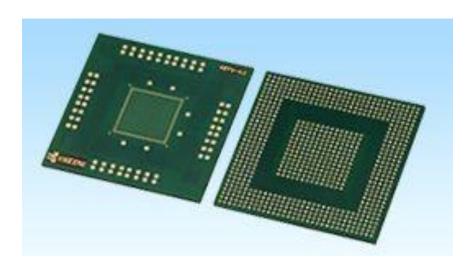
- Motivation for hybrid GaN/CMOS integration by faceto-face bonding.
- Hybrid GaN-CMOS PoL converter design using lateral GaN HEMTs
- Wafer thinning approaches for advanced packaging of power devices.
- Design of a small-form-factor 1200-V, 40-A halfbridge using vertical GaN devices

Monolithic heterogeneous integration is hard...


- Modern technology has traditionally been about eventual monolithic integration.
 - Generally lowest cost
 - Generally highest performance lowest parasitics, highest interconnect density
- For III-Vs, people have been trying for a long time. GaAs-on-Si, GaN-on-Si.
 - Thermal budgets are challenging
 - Contamination issues are real
 - Economics are hard yield issues are more challenging.

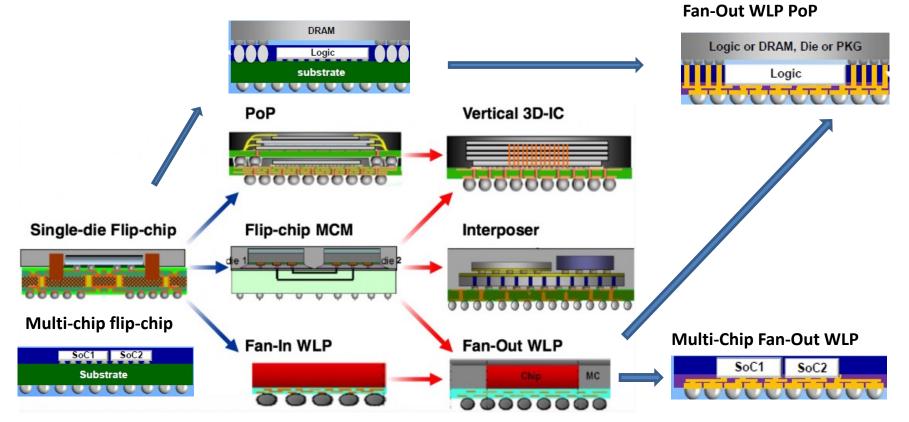
Packaging used to be "boring"... but things are changing

- Packaging technologies are moving to the fore in mainstream electronics
- These new packaging approaches support heterogeneous integration of different technology nodes, semiconductor technologies, and passives
- Power electronics packaging and "regular" packaging are converging.
 - Power dissipation and current levels in "traditional" electronic systems are rising. "Traditional" electronics is power electronics.
 - Increasing levels of integration and higher operating frequencies are driving power systems to higher fan-out requirements and lower interconnect parasitic requirements.
 - WBG semiconductors only accelerate these trends.

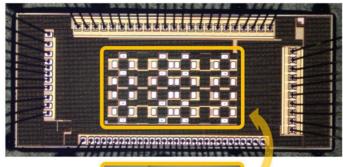

Traditional packaging approaches

• Ceramic packages

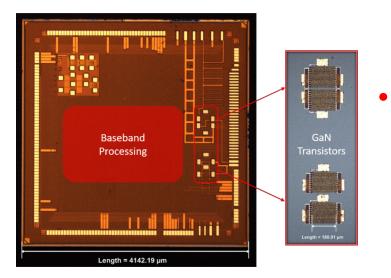
Traditional packaging for power electronics.


• Organic packages

Packaging of choice for mainstream electronics. Not generally associated with high current requirements, but things are changing.

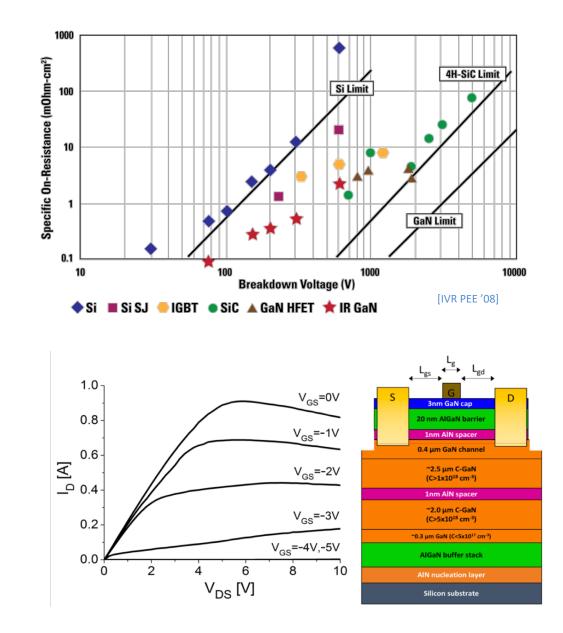

General taxonomy of advanced packaging technologies..

Flip-chip PoP

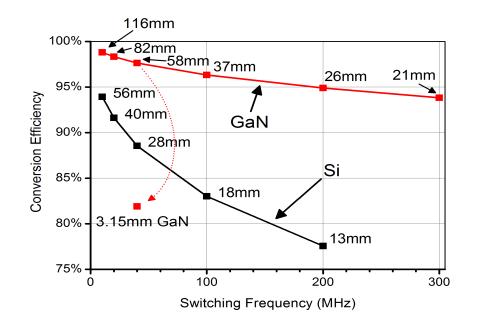


Many of these packaging approaches are achieving interconnection quality similar to monolithic integration.

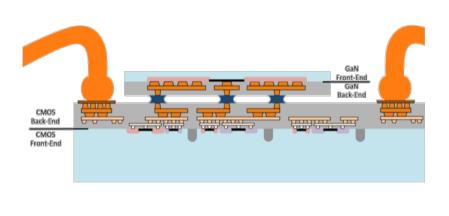
Two examples of CMOS die as active interposer for GaN device integration

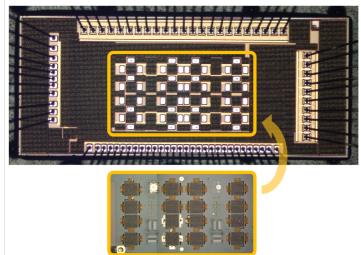


 Hybrid GaN-CMOS power converter operating from 40-V power supply.

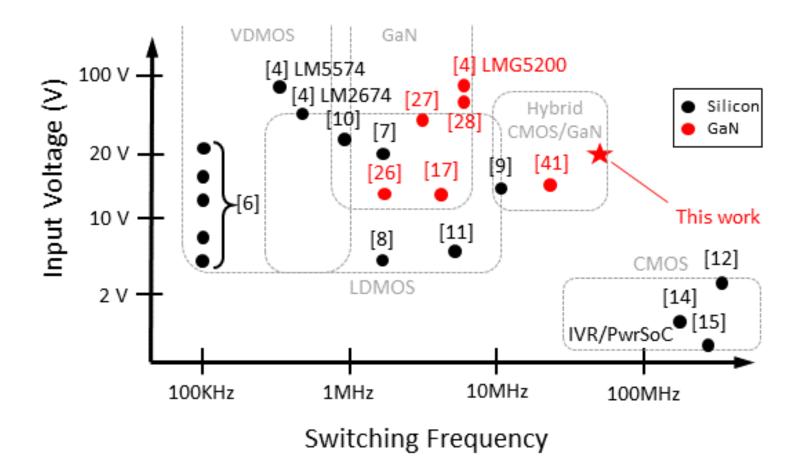

Hybrid GaN-CMOS power amplifier

- GaN high electron mobility transistors (HEMTs) are able to *outperform* Si in almost every power application metric
- Critically, higher switching frequency for a target efficiency allows aggressive reduction of inductor size

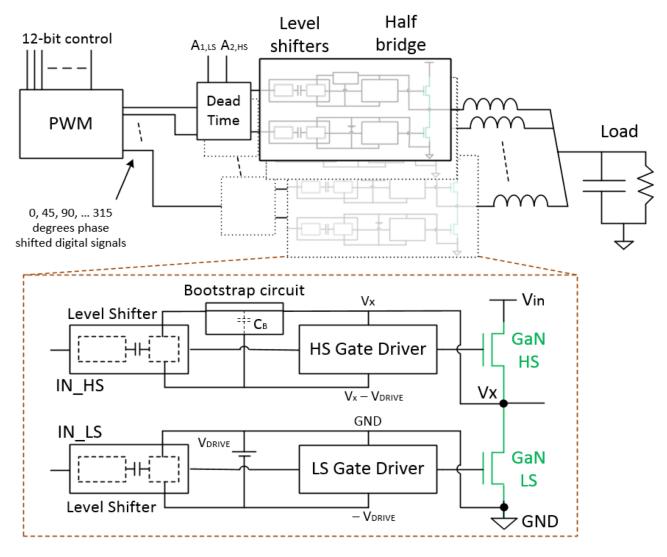



LDMOS versus GaN

Converter	Number of phases	8
	Conversion ratio D	0.125
	Total converter (load) current	3 <i>A</i>
	Phase current	375 mA
	Input voltage	20 V
	Output voltage	2.5 V
GaN	On-state resistance <i>R</i> _{on}	$3.47 \ \Omega \cdot mm$
	Input capacitance C _{iss}	0.195 <i>pF/mm</i>
Si LDMOS	On-state resistance <i>R</i> _{on}	$9.07 \ \Omega \cdot mm$
	Input capacitance C _{iss}	2.16 <i>pF/mm</i>



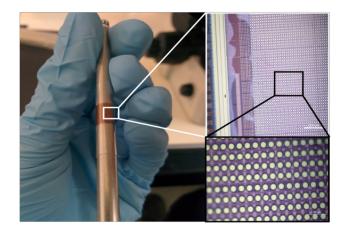
- Aggressively integrated GaN-CMOS converters are enabled by face-to-face bonding
- Drastic reduction in interconnect parasitics, allowing for even higher switching frequency than in PSiP solutions using discrete GaN HEMTs (inductance less than 15 pH)
- Allows continued use of scaled CMOS for complex control circuitry



With aggressive die thinning, this can be compatible with C4 bonding.

Input voltage and *switching frequency* for various converter topologies using silicon and GaN switches

Circuit topology

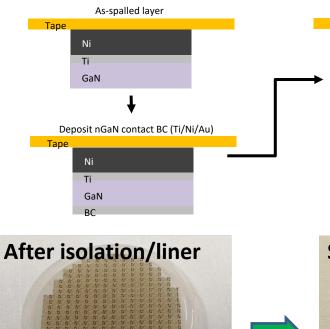


- A three-phase 40 MHz chip-to-chip-integrated GaN-CMOS DC-DC converter is demonstrated, with peak efficiency of 76% at an 8:1 conversion
- Highest switching speed to date for GaN-CMOS IVRs

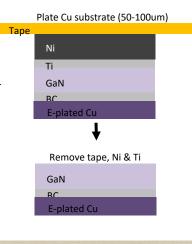
Measurement	1	2	3	4
V _{in}	12 V	8 V	20 V	16 V
V _{out}	1 V	1 V	2.5 V	1 V
Conversion Ratio	12:1	8:1	8:1	16:1
Frequency	40 MHz	40 MHz	40 MHz	20 MHz
# of Phases	3 phases	3 phases	1 phases	7 phases
Max load current	204mA	198mA	30mA	825mA
Max efficiency	68% at 50mA	76% at 51mA	65% at 30mA	62% at 104mA
V _{DRIVE}	>3.5 V	>3.5 V	=5 V	>2.5 V

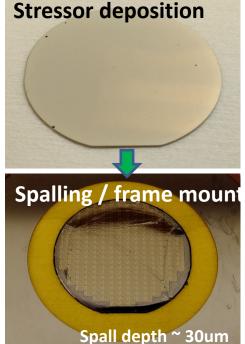
Many of these packaging approaches benefit from die thinning...

- Reduces total thickness of packages very important for certain applications which are form-factor constrained
- Improved thermal conduction through substrate removal.
- Improved device resistance for vertical devices
- Substrate removal also allows for some really usual packaging options – such as flexible substrates

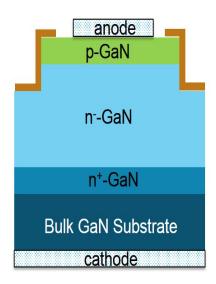


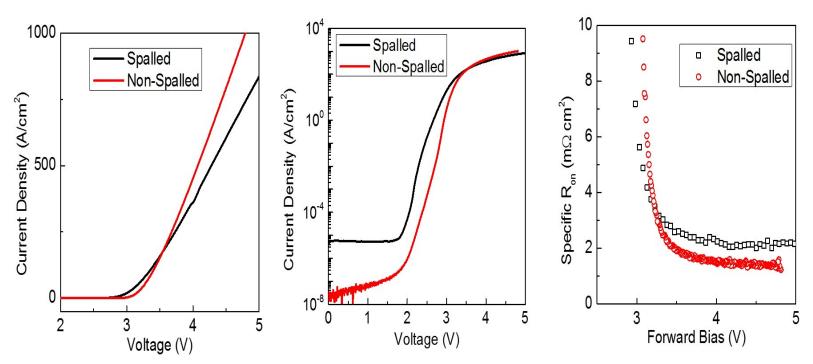
Several approaches to thinning..


- Wet and dry etching. For silicon, the buried oxide in SOI creates a convenient etch stop.
- Mechanical grinding. Back grinding and chemicalmechanical polishing.
- Laser lift off and other lift off techniques.
- Controlled spalling.



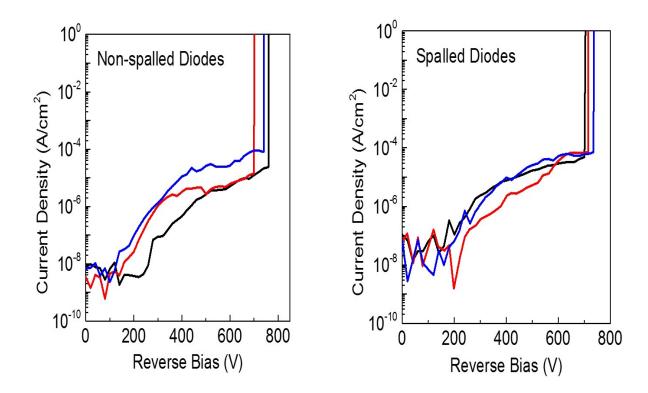
Controlled spalling





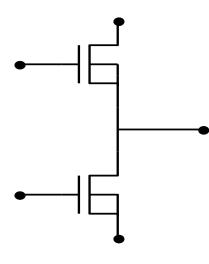
R_{on} : 1.5~3 m Ω ·cm²; BV: 600-800 V

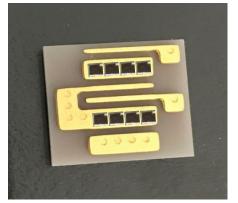
0.5 um p-GaN: Mg ~10¹⁸ cm⁻³ 7 um n⁻-GaN: Si 2x10¹⁶ cm⁻³ 2 um n⁺-GaN: Si 2x10¹⁸ cm⁻³ Bulk GaN Substrate



Forward I-V Characteristics

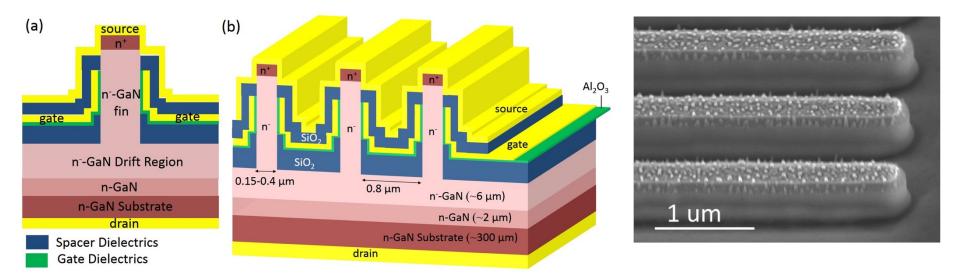
- Low V_{on} of 3 V, I_{on}/I_{off}~10⁸, specific R_{on}: ~2 mΩ·cm²
- Slightly larger off-state leakage and R_{on} than original diodes
- This may be due to the very rough N-face GaN surface after spalling


Reverse Characteristics


- Measured over 10 devices, with BV in the realm of 600~750 V, similar to original diodes
- Figures show the breakdown curves for three diodes measured at different locations
- In this measurement, a high current compliance (10 mA) was used; device exhibiting destructive breakdown and burning trace at the anode edge

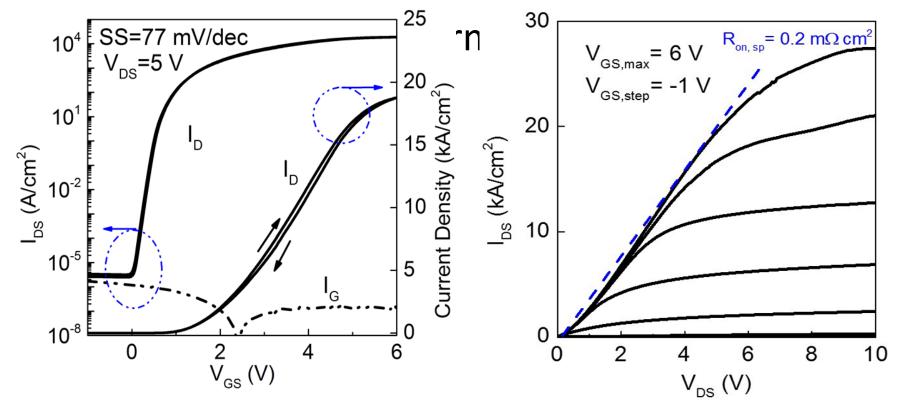
1200-V, 40-A GaN half-bridge module

- We have built a half-bridge module with two vertical enhancementmode GaN devices.
 - Devices are spalled with backside contact bonded directly to package.

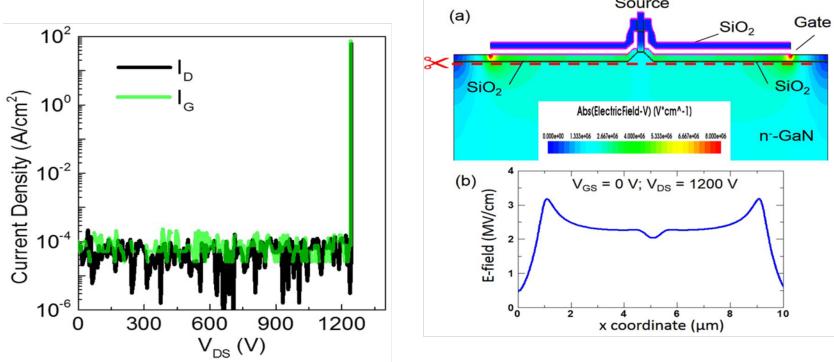


1 cm by 1 cm gold-on-AlN package Excimer laser cutter used for die singulation.

Intriguing possibilities for integration of very highvoltage power electronics with CMOS

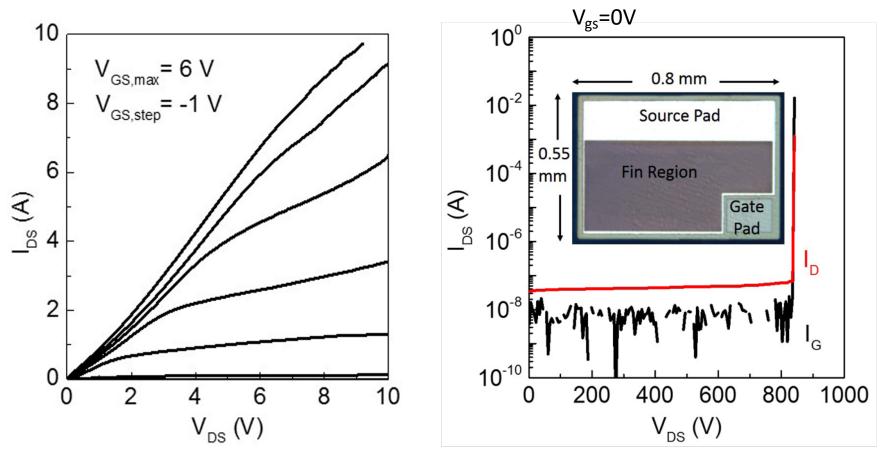

Vertical fin power FETs

- Small device: 60 fins; fin length: 100 μm; fin width: 0.2-0.5 μm
- Large device (10 A-class): 600 fins; fin length: 350-600 μm ; fin width: 0.25 $\,\mu m$

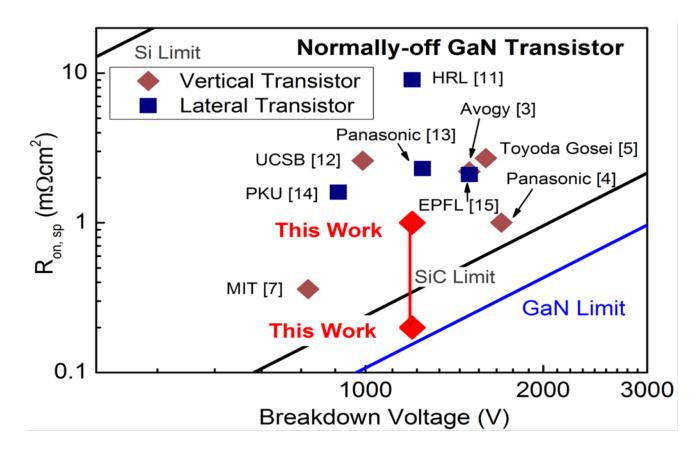

Small Device Forward Characteristics

Normally-off: V_{th}~1 V (extracted at I_{on}/I_{off}=10⁵)

Small Device Reverse Characteristics


- BV over 1200 V with low I_D/I_G , destructive BV at gate edge
- Simulation verifies the peak E-field at gate edge
- Highest BV measured close to 2000 V, with peak E-field close to the GaN limit, reproducibility needs further validation

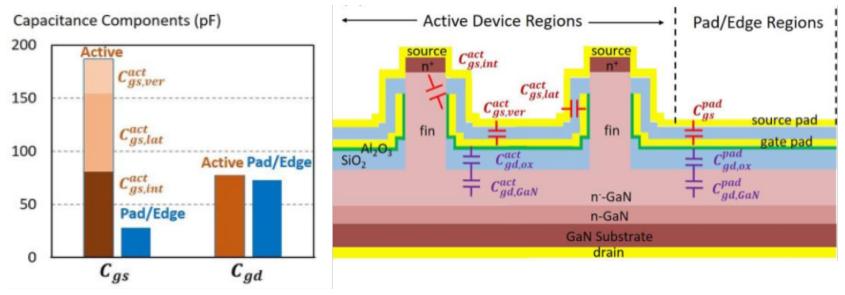
22


Large Device Performance

10-A class device; 800 V destructive BV

Specific R_{on} versus BV

- Top point: R_{on,sp} normalized wrt the total device area
- Bottom point: R_{on,sp} normalized wrt the total fin area


Device comparison

- 1200-V normally-off GaN transistor (V: vertical; L: lateral)
- Highest I_{ON} and second lowest I_{OFF}
- No need for p-GaN or epitaxial regrowth

	Device Structure	R _{on} (mΩcm²)	BV (V)	V _{th} (V)	I _{ON, SAT} (A/cm²)	I _{OFF} @1200 V (A/cm ²)	Large Device
V	Fin FET (This work)	0.2 (1.0)	1200	1	25000	<10 ⁻⁴	10 A / 800 V
	CAVET [Avogy]	2.2	1500	0.5	1500	0.02	2.3 A / 1400 V
	Trench CAVET [Panasonic]	1.0	1700	2.5	3500	0.01	15 A / 400 V
	Trench MOSFET [Toyoda- Gosei]	2.7	1600	2	~1100	<10 ⁻⁸	23.2 A / 1200 V
L	Gate Injector Transistor [Panasonic]	2.3	1250	3	0.4 A/mm	10 ⁻⁷ A/mm	10 A / 600 V
	Gate-recess HEMT [EPFL]	9	1200	0.64	255	0.005	5.5 A / 1200 V

Transistor capacitance analysis

Active and pad/edge capacitance components were estimated through a combination of measurements and simulations

Switching FOMs comparison

	1. 											
Device Technology	Manufacturer / Maker	$\begin{array}{c} R_{\rm on,sp} \\ (m\Omega \rm cm^2) \\ (R_{\rm on}) \end{array}$	BV (kV)	I _{rating} (A)	Chip Area (mm ²)	V _{TH} (V)	C _{ISS} (pF)	C _{OSS} (pF)	Q _G (nC)	Q _{GD} (nC)	Qrr (nC)	Switching FOM $(n\Omega \cdot C)$ $R_{on} \cdot (Q_G + Q_{GD})$ $R_{on} \cdot (Q_G + Q_{GD} + Q_{n})$
GaN Vertical FinFET (this work)	MIT	2.1 (0.91 Ω)	1.2	5	0.45	1.3	248.3*	42.2*	1.24	2.72	~0	3.3 ~2.0 (pad optimized)
SiC MOSFET (CPM2-1200-0160B)	Cree	2.7 [19] (0.16 Ω)	1.2	20	6.28	2.5	525	47	34	14	105	7.68 24.48 (include $Q_{\rm rr}$)
SiC JFET Cascode (UJN1208Z)	United SiC	1.7^{**} (0.15 Ω)	1.2	18.4	>1.13***	4.4	738	58	30	6	63	5.4 14.85 (include $Q_{\rm rr}$)
Si IGBT (NGTB15N120FLWG)	ON Semi	~20 (~0.25 Ω)	1.2	15	320	2	3600	110	150	68	1500	54.5 429.5 (include Q_{rr})
Si CoolMOS (IPD90R1K2C3)	Infineon	$\sim 8^{****}$ (1.2 Ω)	0.9	5	~23.6	3	710	35	28	12	3700	48 4488 (include Q _{rr})
GaN HEMT Cascode [20]	Transphorm	(0.19 Ω)	1.2	>20	N.A.	2.3	N.A.	43.1	10	N.A.	N.A.	N.A.
Vertical GaN MOSFET [5]	TOYODA GOSEI	2.7	1.2	23.2	2.25	3.5)		-	N	. A.	-
Vertical GaN CAVET [2]	Avogy	2.2	1.5	2.3	0.17	0.5				19.	. л.	

Note: * $@V_{DS}=200 \text{ V}$; **Source: <u>http://unitedsic.com/cascodes</u>; ***Calculated by using the R_{on} in the data sheet and the reported $R_{on,sp}$, reflecting the active device area (not including pad/edge areas); ****Source: Infineon's application note titled "CoolMOSTM C7: Mastering the Art of Quickness".

 $C_{iss}=C_{gs}+C_{gs}$ (input capacitance) $C_{oss}=C_{gd}+C_{ds}$ (output capacitance) Power dissipated due to conduction losses, switching losses, and loses due to reverse conduction.

$$\begin{split} P &= P_{cond} + (P_{gate} + P_{QOSS}) + P_{rr} \\ &= I^2 R_{on} D + Q_G V_G f_{SW} + Q_{gd} V_{DS} f_{SW} I_{DS} / I_G + P_{rr} \text{ (hard switching)} \\ &= I^2 R_{on} D + Q_G V_G f_{SW} + Q_{oss} V_{DS} f_{SW} + P_{rr} \text{ (soft switching)} \end{split}$$

27

Matching switching and conduction losses predicts an optimal switching frequency of 3.5 MHz, compared to 10-20 kHz for a Si IGBT.

Conclusions

- Advanced wafer level packaging approaches are becoming the "method of choice" for heterogeneous integration across all electronic systems.
- Growing *convergence of packaging* approaches for "mainstream" electronics and power electronics.
- Example of face-to-face bonding for *GaN-CMOS system integration*.
- *Substrate removal* (or thinning) is an important part of all these approaches.
- Thinning approaches can be applied to the packaging of *high-voltage, high-current vertical GaN switches,* achieving record high power densities