

# 100Mhz .13u Buck in a SIP *evolution* to IVR – "Merckx"

...personal ...portable ...connected

#### Progress Towards Power Supply on Chip or SIP

Scaling Impact and Process Selection (Optimizing PPAC)

**Progress on Discrete Inductors and Capacitors** 

Introducing Merckx – Stage 2 SIP

100Mhz Results Efficiency, DVS Load step and settling

Stage 1 and Stage 2 architectures and Simulation Results

Roadmap ongoing Development

#### **Evolution of Products and Power Delivery**



High Efficiency Power Delivery is one of the few opportunities to save cost, area, battery life and thermal *– higher frequency operation required* 

#### iphone x power cost ~ 10%



#### *iphone* x cpu power board area ~30%





## Evolution of VR Technology [1]

Progress Being Made



Fig. 3. Vision for evolution of PwrSoC technology.

Where we are now – 2018 Integrated inductor products eminent -2019

The Size and Value of the ondie inductor will dictate Die Size present technology for 1 amp saturation is ~ .5MM Area. Beyond 55 nM, smaller die will not allow Integrated Inductors.

**Review of Integrated Magnetics for Power Supply on Chip (PwrSoC)** Cian 'O Math ' una, Senior Member, IEEE, Ningning Wang, Santosh Kulkarni, and Saibal Ro IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 27, NO. 11, NOVEMBER 2012 4799



## Reducing the area used for power conversion



## Motivation Why run a buck at ~100MHz?

Can't fight physics...

- Architecture changes in cores cannot change physics
  - The demand for increased CPU performance Gen on Gen drives power up
  - To counteract this, per-core power consumption must decrease each core must become more efficient
  - The PMIC must help with this CPU core architecture cannot do it alone
  - # of Cores on SOC Increasing Fine Grain Power Management Required.
  - To get smaller and fewer components need to go faster (area ~ switching Frequency)



### Why Consider .13u Versus Deep Sub Micron

**Technolog Scaling** 



| Technology Node (nM)        | Die Size MM2 | DSP Clock (Mhz) | # of Die | Cost per Die \$ |
|-----------------------------|--------------|-----------------|----------|-----------------|
| 180                         | 78           | 300             | 336      | 0.3             |
| 130                         | 51           | 720             | 518      | 0.19            |
| 90                          | 32           | 1000            | 826      | 0.13            |
|                             |              |                 |          |                 |
| 8 Inch wafer costs / \$1000 |              |                 |          |                 |

#### **Economies of CMOS Scaling**

6

Dr. Hans Stork Senior Vice President, and CTO Texas Instrument 2004

#### Relative Cost versus Analog Scaling (10% Analog Scaling/Technology Node)





The scaling of MOSFETs, Moore's law, and ITRS 2014



Projections by Jim Doyle based on publish results

#### **Capacitor Technology**

Miniaturized Passives for SiP

Silicon caps offer significant improvements in electrical performance and reduced foot print, but at a higher per-unit cost.

Reduced ESL in Si-Caps can directly impact voltage droop (~30% improvement) for LSC configurations.

MLCC



Silicon Caps (discrete)



Size: 0402 (0.1mm) Target Value: 220nF Derating: 2x ESL: ~150pH Cost: ~ \$0.01 Size: 0402 (0.1mm Thick) Target Value: 2 x 220nF Derating: 1x ESL: ~50pH Cost: ~\$0.05

Silicon Caps (integrated)



Size: ~1µF/mm<sup>2</sup> Target Value: 220nF Derating: 1x ESL: ~10pH Cost: TBD



## Inductor Technology (Challenging)

Miniaturized Passives for SiP



Low DCR coils is key to maintaining high efficiency with high-frequency VRs LSC connected coils are the "best" option today, with integrated coils (on-die / in-package) becoming available in the near future.



#### 1st Generation "Tesla" 10nH integrated inductor with Magnetics circa 2016



Inductor area 2MM x 1MM



#### Measured Results in Good agreement with Model







1<sup>st</sup> & 2<sup>nd</sup> silicon results (measured on different sites, equipment, test jig) 10% inductance reduction at ~800mA (Isat)

#### Integrated Inductor with Magnetics on a Production Chip (Industry 1<sup>st</sup>)

## Why Consider an Older Co-package Technology versus Deeper Submicron Integration.

Decision to integrate Power or Not to integrate on SOC?

- Lower Total system Cost
  - KGD Know Good Die Improves System Cost.
  - 20% fewer components
  - 40% Total Board area (stage 2 inductors replace with on chip solution)
- Performance
  - Fast DVS 25-30% Longer battery Life (ref. Intel). Now available on .13u process
  - Wide Bandwidth (10Mhz) eliminates 2<sup>nd</sup> and 3<sup>rd</sup> Droop
  - Efficiency improved with asymmetric device availability .13u/55nM
- Additional Benefits
  - Thermal Balancing moving IVR away from Core
  - Improved SOA due to larger feature silicon (.13uBCD).
  - Improved Rout-ability (Less package congestion due to ondie versus in Package Inductors)
  - More Available Ground and Supply Balls due to internal in-package conversion Ratio
  - Integrated Inductors will not fit in the shadow of deep submicron technologies



## **Dual-Stage Buck Architecture**

PMIC-outside -of-SOC Package (SIP)

#### Dual-stage buck system

- Stage-1 pre-regulator typically remains with main system PMIC
- Stage-2 high-frequency buck is in-package with SoC
- Dual-stage system is optimized for target SoC load profile



- Target f<sub>sw</sub> < 5MHz
- Target efficiency ~96%
- Low accuracy, high efficiency, low bandwidth, low power modes
- External magnetics

Target f<sub>sw</sub> > 50MHz (78Mz)

- Target efficiency ~90%
- High accuracy, high efficiency, wide bandwidth, high-speed droop mitigation
- On-die or in-package magnetics

### **Co-Packaged With Customer Silicon Option**

PMIC-in-Package (co Package)

"PMIC-in-Package" is enabled by high-frequency, dual-stage voltage regulators Use miniaturized (0402), in-package, or on-die inductors and capacitors.



## Merckx Stage 2 SiP Package Option

Chip named in honor of Eddy Merckx winner Tour de France 1974







Merkx on Demo Board

## **Merckx Thermal Considerations**

#### Assumptions

- Maximum load power ~8 Watts (1 volt output Load =8 amps; 4 amps/VR)
- Efficiency ~ 87%
- Merckx SIP Volume ~ 20mm^3 which is a power density of .4 watts per mm^3 or ~ 400 watts per cm3.
- Temperature rise of package is rated at degrees C rise per watt ~70C rise per watt for SIP.
- If we assume 70C Rise is acceptable @ absolute maximum power (8 amps) assuming 87% efficiency power delivered 8 watts then ~1 watt dissipated in SIP. Note: Typical Operating power is less (complete thermal report available).



Note: SIP distributes power away from SOC cores as opposed to Integrated solution

### Vision: Merckx Gen1 SIP-> Gen2 IVR

17

Features with Block Diagram

#### Key Features:

- 2 IVRs >4 amps each
- SIP with Discretes (.8MM Height)
- Fast DVS > 1V/uS
- Bandwidth > 10Mhz
- Resolution 9 Bits
- Output Range .4v- 1.1V
- Low Cost .13u Technology



Normalized to 4 Amps Output (2 VRs with 4 amps each)



#### 1st Generation onDie Magnetic Inductor WLCSP circa 2016 Output stage .13uBCD

- 2 Driver/Inductor
  stages side by
  side to test coupling
  - Substrate coupling
  - Cross coupling
- Outcome very little interference.



#### Overview (Balls Pitch .4MM)







SEM Cross Section Magnified View #1 Magnified View #2

#### 1.5V->1V 1-Phase 30Mhz @500mA





Tesla - Industry 1<sup>st</sup> Integrated Inductors on a production VR Chip 10NH inductor (1MM x 1.5MM) circa 2016.



## **Results: Merckx Measured efficiency**

Simplified efficiency analysis

- $P_{loss}(DC) = I^2R = 2^2 * (21m\Omega + 10m\Omega) = 124mW$
- P<sub>loss</sub>(AC) = ~50mW (taken from muRata data
- $P_{loss}(total) = \sim 174 \text{mW}$
- Overall Efficiency Estimate:

$$\eta = \frac{P_{out}}{P_{in}} = \frac{P_{out}}{P_{out} + P_{loss}}$$
$$= \frac{P_{out}}{P_{out}}$$
$$= \frac{P_{out}}{2W}$$
$$= \frac{2W}{2W + 174mW + 89mW} = 88.4\%$$

- 89mW switching losses is in line with our efficiency simulations.
- Key to high efficiency is a low loss inductor.





## Results: Fast DVS Rise/Fall



20

## **Results:** Load Step/Transient Response

4φ, 0A → 14A, ~1A/ns



6

## Summary of Achieved Results:



Merckx Results Achieved on 1st Silicon

| Parameter                           | min  | nom  | max          | Unit | Comments                                        |
|-------------------------------------|------|------|--------------|------|-------------------------------------------------|
| Input Voltage                       | 1.35 | 1.5  | 1.65         | V    |                                                 |
| Output Voltage Range                | 0.4  |      | 1.1          | V    |                                                 |
| Output Voltage Resolution           |      | 2.35 |              | mV   | VDAC LSB                                        |
| Frequency Range                     | 52   | 78   | 104          | MHz  | higher and lower frequencies are possible       |
| Load Current Range                  | 0.5  |      | 8            | А    | higher and lower possible at reduced efficiency |
| Efficiency @78MHz                   |      | 87   |              | %    | Peak efficiency @ 1A, 2A, 4A                    |
| Efficiency @104MHz                  |      | 86   |              | %    | Peak efficiency @ 1A, 2A, 4A                    |
| FDVS (Fast Dynamic Voltage Scaling) |      |      | 5            | V/µs | 4ф, 4A Load                                     |
| Closed Loop Bandwidth               |      | 10   | $\mathbf{D}$ | MHz  | Estimated from transient response               |
| Line Regulation                     |      | 6.6  |              | mV/V | 4φ, 4A Load, Vout=0.75V, Vin=1.35V-1.65V        |
| Load Regulation                     |      | 0.27 |              | mV/A | 4φ, Vout=0.75V, Vin=1.5V, Load=2A-8A            |



## Merckx Power Density (.4 watt/mm<sup>3</sup>) [1]



The Road to Fully Integrated DC–DC Conversion via the Switched-Capacitor Approach Seth R. Sanders, *Fellow, IEEE*, Elad Alon, *Senior Member, IEEE*, Hanh-Phuc Le, *Student Member, IEEE*, Michael D. Seeman, *Member, IEEE*, Mervin John, and Vincent W. Ng, *Member, IEEE* 

#### Merckx ~8 watts in 20MM3 (78Mhz)





DA9214A available in High Volume Production today... 3 level development continuing goal to achieve > 95% efficiency + smaller inductor

https://www.dialog-semiconductor.com/sites/default/files/da9213-14-15\_datasheet\_2v2.pdf

#### DIALOG INTEGRATED BUCK ROADMAP







- Significant progress being made in realizing PWRsoc in commercial production based on new available discrete components and improvement in IC process devices and architectures.
- A IVR SIP developed and tested for stage 2 in a .13uBCD process which is very competitive in performance, price, system area (PPAC) with alternative packaging methods proposed.
- Multiple methods of including IVR solutions including co package stage 1 and stage 2 approach (same process) proposed with significant advantages over a single stage approach simulated and in development (ref Roadmap).
- Demo available for further discussions with interested potential customers.

#### Other Options -15A buck for SoC in16.4mm<sup>2</sup>

Stelvio is a prototype dual-phase buck converter with coupled-coils



| Parameter                   | Value                   |
|-----------------------------|-------------------------|
| V <sub>IN</sub>             | 2.3 - 4.9 V             |
| V <sub>OUT</sub>            | 0.5 – 1.2 V             |
| Switching Frequency         | 6 - 9 MHz               |
| Max I <sub>OUT</sub> DC     | 15 A                    |
| Max I <sub>OUT</sub> Pulsed | 25 A for 25% duty cycle |
| Buck+BOM                    | 16.4 mm <sup>2</sup>    |







#### Merckx Demo Setup (see @ Dialog Demo Table)

#### Configuration





#### Design challenges for realizing Integrated coils (Aircore vs Magnetics)

**Basic defining Equations:** 

Energy stored/Volume=  $2*\frac{1}{2}B_{pk}H_{pk}$ 

Core loss/volume- area inside the loop=

Saturation current,  $I_{sat} = \frac{B_{sat} \cdot l_m}{\mu N}$ 

#### Integrated Coil takeaway-

- Silicon processing technology limited the volume of the magnetic core, copper deposited
- Require smaller inductance to benefit for silicon processing which requires higher operating frequency
- Use of thin film cores with higher µ, lsat suited for integrated coils, but also have higher losses
- Design challenge for integrated coils- balancing µeff to achieve inductance, versus current handling & losses(lsat).

Alternative to Integrated Magnetics -> On Die Aircore ~3nH Q~6 @ 100Mhz

i(t)



29



н

Magnetic path length  $\ell_m$ 

#### References

[1] <u>Review of Integrated Magnetics for Power Supply on Chip (PwrSoC)</u> Cian ´O Math ´ una, Senior Member, IEEE, Ningning Wang, Santosh Kulkarni IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 27, NO. 11, NOVEMBER 2012 4799

[2] <u>System Level Analysis of Fast, Per-Core DVFS using On-Chip Switching Regulators</u> Wonyoung Kim, Meeta S. Gupta, Gu-Yeon Wei and David Brooks School of Engineering and Applied Sciences, Harvard University, 33 Oxford St., Cambridge, MA 02138wonyoung,meeta,guyeon,dbrooks}@eecs.harvard.edu

[3] Scaling Analog Circuits into Deep Nanoscale CMOS: Obstacles and Ways to Overcome Them Peter R. Kinget Dept. of Electrical Engineering, Columbia University, New York, NY 10027, USA IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 46, NO. 6, JUNE 1999 711

[4] <u>Analog Circuit Performance and Process Scaling</u>. Anne-Johan Annema IEEE ELECTRON DEVICE LETTERS, VOL. 19, NO. 7, JULY 1998

[5] 0.35- m Asymmetric and Symmetric LDD Device Comparison Using a Reliability/Speed/Power Methodology Jone F

[6] <u>Soft Charging Switched Capacitor CMOS Power Converters - Increasing Efficiency and Power Density Using a Merged Two-Stage</u> <u>Architecture</u> Robert Pilawa-Podgurski PowerSoC 2012. Chen, Student Member, IEEE, Jiang Tao, Peng Fang, and Chenming Hu, Fellow, IEEE

[7]Loss Modeling and Optimization for Monolithic Implementation of the Three-level Buck Converter Beomseok Choi and Dragan Maksimovic Department of Electrical, Computer, and Energy Engineering University of Colorado Boulder Boulder, CO 80309-0425, USA

[8] A Fully Integrated Battery-Connected Switched-Capacitor 4:1 Voltage Regulator with 70% Peak Efficiency Using Bottom-Plate Charge Recycling Tao Tong, Xuan Zhang, Wonyoung Kim, David Brooks, Gu-Yeon Wei School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, U.S.A E-mail: taotong@seas.harvard.edu

[9]. <u>Reducing Power Loss, Cost and Complexity of SoC Power Delivery Using Integrated 3-Level Voltage Regulators Kim</u>, Wonyoung. Doctoral dissertation, Harvard University.. 2013



## Powering the Smart Connected Future

www.dialog-semiconductor.com



...connected

