International Workshop on Power Supply On Chip (PwrSoC) 2016

Ring-Shaped Multiphase Switched-Capacitor DC-DC Converters

Yan Lu

Assistant Professor, University of Macau

Email: yanlu@umac.mo

Outline

- Motivations of the DC-DC Converter-Ring
- Discussion on Unity Gain bandwidth Extension
- Layout-Oriented Converter-Ring Design
- Measurement Results
- Extended Possible Solutions
- Conclusions

Multi-Interleaving-Phase DC-DC Converters

- Reduce output voltage ripple
- Reduce input current ripple

- ✓ Fully-on-chip, multi-phase
- x Efficiency (like linear regulator)
- ✓ First-order power stage

- X One L for each phase
- ✓ Efficiency (ideally 100%)
- LC second-order filter

On-Chip IR Drops and dI/dt Variations

- On-chip power delivery suffers from IR drops and supply variations.
- Supplying the load from all directions can significantly alleviate such problem.

Conceptual Bonding Diagram

Prior Art Achieving Fast Transient

Achieved fast transient response with additional 3.3GHz Clock.

H.-P. Le, et al., ISSCC, 2013

Prior Art Achieving Fast Transient

 Achieved fast transient response with 4GHz Clock and feedforward control.

T. M. Andersen, et al., ISSCC, 2015

Unity Gain Frequency (UGF) Extension

- Using the following configurations for the switchedcapacitor power converter (SCPC) for UGF extension:
 - Set the dominant pole at V_{OUT},
 - Employ a high speed error amplifier (EA),
 - Tune the oscillator frequency through its supply $(V_{DD}CO)$.

Proposed System Architecture

Pseudo-Continuous-Time SCPC

- Increasing the phase number also enables the control-loop to response at every fraction of the switching period (T), which is T/123 in our case.
- The discrete-time SCPC approaches a pseudo-continuous-time power stage. Thus, UGF of the control-loop could be designed to be higher than the switching frequency of the SCPC.

Achieve fast response without using additional GHz clock.

Error Amplifier and V_{DD} Controlled Oscillator

Internal Rails for Low Voltage Devices

- Voltage domain $[V_{IN}: V_{SSH}] = [V_{IN}: V_{IN}/3]$
- Voltage domain [V_{DDL}: Gnd] = [2V_{IN}/3: Gnd]
- V_{IN}: 1.6V to 2.2V

Level Shifter (LS)

• Effectively convert the input signal from the $[V_{DDC}:Gnd]$ domain to the domains of $[V_{IN}:V_{SSH}]$ and $[V_{DDL}:Gnd]$, simultaneously, through one single conversion.

(N-1)/N Switched-Capacitor Power Converter

The conversion ratio (CR) can be reconfigured into 1/2, 2/3, 3/4.

(N-1)/N Switched-Capacitor Power Converter

12 Switches and 3 Capacitors for Each Unit Cell

3-Transistor Based Inverters

CR=3/4. S_3 and S_7 are Constant Off.

CR=2/3. $S_{3,10,11}$ Constant Off, $S_{9,12}$ Constant On.

CR=1/2. $S_{6,7,10,11}$ Constant Off, $S_{5,8,9,12}$ Constant On.

Chip Micrograph

65nm CMOS

1.2V LL Devices

 Stacked MOS, MOM, MIM capacitors

Effective area:
0.84mm²

Measured Transient Results

Measured Power Conversion Efficiencies

78%@I_{Load}=50mA 75%@I_{Load}=100mA 65%@I_{Load}=150mA

Comparison Table

Publication	Le, JSSC '11	Piqué ISSCC '12	Le, ISSCC '13	Jain, JSSC '14	This work '15
Process	32nm SOI	90nm	65nm	22nm Tri-gate	65nm
Conv. Ratios	2/3, 1/2, 1/3	1/2, 2/3	1/3, 2/5	1/2, 2/3, 4/5, 1	1/2, 2/3, 3/4
Phase No.	32	41	18	8	123
V _{IN}	2	1.2-2V	3-4V	1.225V	1.6-2.2V
V _{out}	0.5-1.2V	0.7V	1V	0.45-1V	0.6-1.2V
F _S @η _{Peak}	300MHz*	50MHz	N/A	250MHz	33MHz
η_{Peak}	79.8%	81%	74.3%	82.7%	80.0%
Power Density	860mW/mm ²	39mW/mm²	190mW/mm ²	250mW/mm ²	180mW/mm²
P _{OUT,Max}	600mW*	10mW	162mW	25mW	152mW
Ripple Range	N/A	3.8mV-N/A	N/A	43mV-125mV*	2.2mV-30mV
ΔV _{OUT} @T _{Edge}	N/A	N/A	76mV @50ps	N/A	58mV @100ps
DVS Speed	N/A	N/A	N/A	N/A	2.5V/μs

^{*}Estimated from figure.

Multiple V_{DD} Domains in Converter-Ring

Cascade NMOS LDO for multiple V_{DD} domains.

• Only μA of I_0 is drawn from V_{IN} .

Main I_{LOAD} provided by V_{DCDC}.

Y. Lu, et al., "An NMOS-LDO Regulated Switched-Capacitor DC—DC Converter ...," *IEEE TPEL*, Feb. 2016.

Power Converter Grid?

 On-chip power converter grid with flip chip or through silicon via (TSV) in 3D IC?

Conclusions

- A Ring-Shaped Multiphase Switched-Capacitor DC-DC Converter is proposed for on-chip power delivery.
- Unity gain bandwidth is designed to be a few times higher than the switching frequency of the DC-DC Converter, enabled by
 - 1. Setting the dominant pole at V_{OUT};
 - Designing a high speed EA;
 - 3. Tuning the $V_{DD}CO$ frequency through its supply voltage.
- Possible solutions (NMOS-LDO regulation, power converter grid) are proposed.

Acknowledgements

- Collaborators
 - Mr. Junmin Jiang and Prof. Wing-Hung Ki, HKUST
- Funding Supports
 - Research Grants Council of Hong Kong (Grant: T23-612/12-R)
 - Macao Science & Technology Development Fund (FDCT)
 - Research Committee of University of Macau