

Coupled inductors on silicon for PwrSoC in the frame of PowerSwipe project

Santosh Kulkarni*, Bruno Allard**

*Microsystems Centre, Tyndall National Institute, University College Cork, Ireland

**Ampere lab, INSA Lyon, France

PowerSwipe Concept

PowerSwipe Consortium Partners

First EU Funded programme on PwrSoC/PwrSiP

Powerswipe-Demonstrators

Demo 1- Low Frequency dc-dc for Automotive

Demo 2- High Frequency dc-dc for multi-phase IVR applications

Summary of presentation

- Powerswipe' integrated coupled inductors
- Design, Fabrication & Small Signal testing of 'Loosely' coupled inductor device
- Large Signal characterization of integrated coupled inductors
 - Large signal Inductance, resistance, BH loop
 - Impact of dc bias on magnetic material under test
- Summary

PowerSwipe Motivation/Objectives

Achieve miniaturisation of power passives:

- Increased switching frequency of switched-mode DC-DC converter (10-200 MHz)
- Power passives footprint comparable to DC-DC converter IC (1 to 2 mm²)

HF DC-DC converter-Specs

Inductor	Freq.	L	Coupling	Efficiency	Efficiency	Total
design	(MHz)	(nH)	factor	(magnetics)	(IC)	efficiency
Coupled	100	45	~0.4	90%	90,4%	81%

PowerSwipe coupled inductor – Design & Fabrication

L (nH)	Core	Core	Copper	Copper	DCR	Device
	Length	Thickness	width	Thickness	(Ohm)	Footprint
45 Coupled	0.95 mm	2 μm	40 μm	15 µm	0.282	1.25 mm ²

45nH Coupled

Device Schematic

Coupled inductor prototype

Device Cross-section

Powerswipe coupled inductor – Small signal Characterization

Small signal testing: LCR meter & 4-probe Kelvin setup- INSA Lyon

✓ Good frequency & current response

Small signal testing: L vs DC bias-Tyndall

Powerswipe coupled inductor – Coupling Measurement

Two port VNA test for coupling

$$k_{measured}$$
= 0.38; k_{design} = 0.4

Large Signal Characterization Set-up

- Signal generator- Agilent E8257D
- Power amplifier- Applied Research 25A250A
- Current probe- Pearson current 2877
- Voltage probe- Tap 1500

Test circuit for coupled inductor measurement

Key issues with large signal testing set-up

- Noise
 - Use 4 wire measurement for the DUT
- Error in amplitude & phase measurement
 - Attenuation & time delay from current & voltage probes
 - Accurate compensation system to correct this skew
- Compensation is done through a measurement on a capacitor of known impedance

Voltage & Current waveforms for Capacitor-Compensation

- Time lag @ 40MHz- 0.671 ns
- Current attenuation- 0.895

Inductance & DC resistance measurements

- Inductance (Self/Mutual) stays constant upto 60MHz
- Resistance measurement shows a dramatic increase after 60MHz
- This behaviour not consistent with small signal test data
- Possible explanation- Voltage probes damaged

DC bias measurements

- Voltage & Current waveforms including compensated current loops
- Iac- 20mA; Ferquency- 60MHz
- DC saturation current- 700 mA (consistent with small signal measurement)

1.5

x 10⁸

Large signal testing to plot BH loops @ different bias currents

- B value estimated using Faraday's law
- H value estimated using Ampere's law

Final circuit testing of Powerswipe coupled inductors

- Initial test on single phase discrete inductor with Interposer completed
- Circuit testing of coupled inductor with VR ongoing at INSA, Lyon- Result will be presented at future conferences

Benchmarking Powerswipe VR performance

Section 4 Efficiency

- Globally better on interposer
- Slightly increased on-board for low load current

www.tyndall.ie

Summary

- First EU funded project on PwrSoC/PwrSiP
 - Target applications- Automotive & IVR
- Developed multiphase coupled inductors for IVR
 - Racetrack coupled inductors designed using CAD tool
 - Fabricated using Tyndall's Double Metal Layer process
 - Small signal measurement in good agreement with design data
- Developed large signal characterization system for measuring coupled inductor performance
- Circuit level testing of VR's ongoing

Tyndall National Institute- Prof. Cian O'Mathuna, Dr. Paul McCloskey, Dr. Ningning Wang, Dr. Zoran Pavolvic, Ricky Anthony, Nicolas Cordero, Margaret Hegarty, Joe O'Brien, Declan Casey, James Rohan, Anne-Marie Kelleher, Graeme Maxwell

<u>Lab Ampere, INSA, Lyon-</u> Florian Neveu, Dr. Christian Martin

Universidad Carlos III de Madrid- Dr. Cristina Fernandez Herrero

<u>Funding- European Union for funding the work through FP7 (Project: PowerSwipe) under Grant 318529.</u>

