

The Power Management End-Game

Invisible → 100% Efficiency, 0 Volume

Easy-to-Use → Complete power management in 1 chip, no EMI

Power Supply On a Chip

Devices

- Conduction Losses
- Charge Losses

Passives

- Magnetics
- Capacitors

Parasitics

- Device Ringing IV Overlap
- Reverse Recovery

2

Typical Loss Breakdown – Buck Converter

Topology Classes

Standard Converters

Hybrid Converters

Resonant Converters

- ✓ Simple and proven
- ✓ Low Cost
- X Hard Switched
- X Full VIN rated devices

- ✓ Reduced Device Voltage Stresses
- ✓ Reduced Energy Storage In Inductors
- X Hard Switched
- X Additional Component(s)

- Reduced or eliminated switching losses
- ✓ Majority of energy storage still in L
- X Additional Component(s)

- Advantages
 - More energy storage in caps, less in inductors
 - Lower switch ratings and stress
 - Smaller current ripple
- Disadvantages
 - Added component
 - Duty cycle limitation

[Nishijima, 2005] [Shenoy], 2015

17x smaller footprint 34X smaller volume

- V_{IN} VC Applied to L₁
- V_C charged through phase 1 path
- L₂ current decreases

No current flowing through V_c

- L₁ current decreases
- V_C Applied to L_{2→} Becomes Phase 2 source
- L₂ current increases

No current flowing through V_c

- More energy storage in the capacitor, less in inductors
- ✓ Device rated for V_{IN}/2
- X Hard Switched
- X Additional Component(s)
- X Duty Cycle Limitation

Advantages – Capacitors vs. Inductors

- Capacitor Voltage and Inductor currents naturally balanced
- ✓ More energy storage in the capacitor, less in inductors
- ✓ Device rated for V_{IN}/2
- X Hard Switched
- X Additional Component(s)
- X Duty Cycle Limitation

Rsp Advantages

- Capacitor Voltage and Inductor currents naturally balanced
- More energy storage in the capacitor, less in inductors
- ✓ Device rated for V_{IN}/2
- X Hard Switched
- X Additional Component(s)
- X Duty Cycle Limitation

*B. El-Kareh, L. Hutter, "Silicon Analog Components"

 Enables Smaller Die Area -- \$\$ Savings

FOM Advantages

- More energy storage in the capacitor, less in inductors
- ✓ Device rated for V_{IN}/2
- X Hard Switched
- X Additional Component(s)
- X Duty Cycle Limitation

 ~3x-5x better FOM in this example

CV² and I-V Overlap Losses

- Capacitor Voltage and Inductor currents naturally balanced
- ✓ More energy storage in the capacitor, less in inductors
- √ Device rated for V_{IN}/2
- X Hard Switched
- X Additional Component(s)
- X Duty Cycle Limitation

Hard Switching Losses Reduced

- 1/2CV²
 - V/2 and C decreases w/FOM improvements
- IV Overlap $-\frac{1}{2}\frac{V_{IN}}{2}I_Lt_r$
 - Assume same DV/DT and DI/DT as a Buck
 - t_R halves, 2x more transitions,
 - 1/4 the transition losses

Buck Converter vs. SC Buck

Adding It All Up

HF Switcher

TPS84A20

TPS51367

Topology Classes

Standard Converters

Hybrid Converters

Resonant Converters

- ✓ Simple and proven
- ✓ Low Cost
- X Hard Switched
- X Full VIN rated devices

- ✓ Reduced Device Voltage Stresses
- ✓ Reduced Energy Storage In Inductors
- X Hard Switched
- X Additional Component(s)

- Reduced or eliminated switching losses
- ✓ Majority of energy storage still in L
- X Additional Component(s)

C. Nan, R. Ayyanar, "A 1 MHz Bi-directional Soft-switching DC-DC Converter with Planar Coupled Inductor for Dual Voltage Automotive Systems"

TEXAS INSTRUMENTS

- Typical Buck Operation
- Inductor current slews down

- Q2 remains ON holding switched node at ground
- SAUX turns ON ramping up current in LAUX
- Once AUX current is greater than L current, Q1 Coss conducts

- Turn ON Q1 with ZVS
- LAUX current ramps down to zero after which SAUX is turned off

 Q1 conducts remainder of interval as in typical buck converter

- ✓ ZVS turn on of Q₁
- ✓ ZCS turn off of S_{AUX}
- ✓ No I-V turn on losses for Q₁
- X Added conduction losses for S_{ALIX}
- X Added die area for S_{AUX}
- X Extra component losses

Analysis and Comparison

Loss Breakdown	Buck (1MHz)	ZVT (1MHz)
Cond. Loss L + L _{AUX}	1.0x	~2.3x
Q _{oss}	1.0x	0.5x
Q _{rr}	1.0x	0x
IV-Overlap (ON)	1.0x	0x
IV-Overlap (OFF)	1.0x	1.0x
D _{RR} Cond.	1.0x	0.2x
P _{GATE}	1.0x	1.2x
P _{TOT}	1.0x	0.96x

Buck Converter Vs. ZVT

Opportunities

- If cost is a non-factor (usually isn't), large efficiency gains possible
- Other main challenge → The Magnetic element
 - Conduction Losses
 - Core losses
 - Cost
 - Size

Summary

New Topologies offer opportunity to move towards full power supply on a chip

Options and alternatives with various pros and cons

Still need improvements on:

- Inductor integration
- Capacitor integration
- Better FETs
- Better packages

Questions