

PwrSoC enabling architectures in different applications

Arnold Knott

DTU Elektro, Electronics Group
Technical University of Denmark,
akn@elektro.dtu.dk

http://www.dtu.dk/centre/ele/English.aspx

DTU Electrical EngineeringDepartment of Electrical Engineering

Applications for PwrSoC

Enablers: semiconductors

Disablers: passive components

What's new on the architecture side?

AGENDA

Applications for PwrSoC

Enablers: semiconductors

Disablers: passive components

What's new on the architecture side?

AGENDA

Popular applications

DIIU

Chargers

(http://www.folomojo.com/ces-2015-beyond-smartphones-mind-blowing-new-devices-revealed/)

Point of load

(Integrated Power Delivery for High Performance Server Based Microprocessors, J. Ted DiBene II, PowerSoC08)

LED driver

LED drivers

So, what's different in audio applications?

Todays audio power amplifiers

• 100 W (discrete design)

• 90 W / 135 W (IR4321M in IRAUDAMP21)

Similar examples from TI, NXP, ST and others

My research goal

• Fully integrated audio power amplifier with high efficiency...

... and any other power application in DC/AC, AC/DC, DC/DC

Applications for PwrSoC

Enablers: semiconductors

Disablers: passive components

What's new on the architecture side

AGENDA

FOMs on input of GaN & Si

DTU Elektro Institut for Elektroteknologi ■ GaN FETs - Discrete

→ Sillicon MOSFETs - Discrete

Design and Implementation of High Frequency Buck

Converter Using Multi-Layer PCB Inductor, Y. Nour et. al,

IECON 2016

□ Technical University of Denmark, Arnold Knott

12

Nonlinear capacitance modeling

Discrete GaN design

- $V_{in} = 40 \text{ V}, V_{out} = 10 \text{ V}$
- P_{out} = 12 W
- $\eta_{peak} = 87 \%$
- $P/Vol = 20 W/cm^3$
- More to come at APEC!

GaN-based audio power amplifers

- $\bullet f_{sw} = 1 M$
- $P_{out} = 50$
- EPC2016

Amplification." Audio Engineering Society Convention 138. Audio Engineering Society, 2015.

THD+N vs frequency, M = 0.1

2k

5k

10

5

= 0.1

20

50

20k

10k

Si lateral power transistors

- "dual on die" electrically isolated super-junction lateral power transistors.
- 2 x 140 V, 1.2 Ω N-ch MOSFETs

• Using a 0.18 μm SOI process.

E-Poster tomorrow!

Applications for PwrSoC Enablers: semiconductors

Disablers: passive components

What's new on the architecture side?

AGENDA

Passive components in PwrSoC

- PwrSoC:
 - lighter, cheaper, less material;
 - at mass production material amount is proportional to material cost
- so less material => less cost
- Therefore:
 - magnetic core manufacturers & capacitor manufacturers: Potentially loosing turn-over
- Main focus on inductors here
- Academia: trying hard with new materials
 - o some go air-core approach

PCB toroids

Contained magnetic field

Field ratios

$$L_N = \frac{N^2 h \mu}{2\pi} \ln \left(\frac{r_o}{r_i}\right)$$

Single turn field

$$L_1 = \frac{r_i + r_o}{2} \mu \left[\ln \left(8 \frac{r_o + r_i}{r_o - r_i} \right) - 2 \right]$$

Design for inductance and losses

N for 50 nH

Slab modelling

Total resistance per turn

Experimental verification

specification

Parameter	50 nH inductor
Inductance L	50.3 nH
Outer radius r_o	8.4 mm
Radius ratio M	4.3
Inner radius r_i	$\approx 1.95 \text{ mm}$
Toroid height h	$1.6 \mathrm{\ mm}$
Number of turns N	8
Resulting total resistance R	$209~\mathrm{m}\Omega$
Field distribution factor γ	7.7 %

measurement

verification

	Design	Calculation	Measurement
Inductance L	50 nH	50.3 nH	52 nH
Series resistance R	_	$209~\mathrm{m}\Omega$	$219~\mathrm{m}\Omega$
Quality factor Q	_	151	149

"Printed Circuit Board Integrated Toroidal Radio Frequency Inductors", Kamby, P.; Knott, A.; Andersen, M.A.E., *IEEE Industrial Electronics Conference (IECON)*, October 2012

Integrated air core toroid

- L = 45 nH
- $Q_{pk} = 21$
- $A = 4 \text{ mm}^2$

More to come at APEC!

Si Fixture

(a)

R₀

E-poster tomorrow!

Applications for PwrSoC

Enablers: semiconductors

Disablers: passive components

What's new on the architecture side? AGENDA

Architectures

- AC/DC interface
 - Rectifiers
 - Power combiner through switched cap
 - Ripple ports
 - Inductive based
 - Switched cap
- DC/DC through Very High Frequency (VHF, 30 MHz – 300 MHz)
 - \circ Class Ε, Class Φ₂, Class DE
 - Stacking

Rectifiers

- Bridgeless Totem Pole 🕦 (Infineon, "GaN in a Silicon world: competition or coexistence", APEC 2016, Industry Presentation, slide 17)
- Cascaded multi-cell rectifier (Kasper, M., et al. "Hardware verification of a hyper-efficient (98%) and super-compact (2.2 kW/dm 3) isolated AC/DC telecom power supply module based on multi-cell converter approach." APEC 2015)

tomorrow! Bridgeless Totem Pole Rectifier with Flying Capacitor

VDC+

(Vu, T., et. al, "Implementation of multi-level bridgeless PFC rectifiers for mid-power single phase applications." APEC 2016)

PwrSiP

M2

М3

Μ4

Power combiner through switched cap

- US mains -> 35 V
- $f_{sw} = 3 10 \text{ MHz}$
- $\eta_{peak} = 92 \%$
- PF = 0.89
- $P/Vol = 3,1 W/cm^3$

(Lim, S., et. al, "New AC-DC Power Factor Correction Architecture Suitable for High-Frequency Operation." *IEEE Transactions on Power Electronics* 31.4 (2016).)

Inductive-based ripple port

- US-mains -> 42 V
- Output ripple:5 % * V_{out}

(Wang, R., et al. "A high power density singlephase PWM rectifier with active ripple energy storage." APEC 2010.)

(Tian, B., A Single-phase Rectifier With Ripple-power Decoupling and Application to LED Lighting. M.Sc. thesis. Texas A&M University, 2015.)

VHF DC-DC resonant converter topologies

High voltages

⇒bigger distances on semiconductor die

⇒therefore bigger parasitic "plates"

⇒Bigger capacitances

"Radio Frequency Switch Mode Power Supplies", Toke M. Andersen, MSc. Thesis, Technical University of Denmark (DTU), 2010

DTU

Class-DE is reducing voltage stress

Gate Drive is the key

Class-DE final implementation

"Very High Frequency Half Bridge DC/DC Converter", Mickey P. Madsen, Arnold Knott, Michael A.E. Andersen, APEC 2014

Stacking of VHF converters converter with unified rectifier."

US mains -> 60 V LED

• $P/Vol = 2,1 W/cm^3$

Pedersen, Jeppe A., et al. "US mains stacked Very High Frequency self-oscillating resonant power converter with unified rectifier."

APEC 2016

9.3 mm

38.2 mm

Conclusion on components

- PwrSoC:
 - o smaller, lighter, less material (for passives) => cheaper
- Smaller passives (material volume ~ mass production cost):
 - magnetic core manufacturers & capacitor manufacturers:
 Potentially loosing turn-over
 - Unless we find new markets / applications, like LED drivers
- Bigger part of the cake goes to semiconductor companies
- Academia: trying hard with new materials, some go air-core approach

Conclusion on architectures

- Intensified research on AC/DC
 - o mains interface
 - Ripple ports
- Intensified research on DC/AC
 - see google little box challenge
- Stacking in DC/DC
 - Galvanic isolation solutions found
 - Enables stacking for both inductor based and switched cap approaches

THANK YOU FOR THE INVITATION AND YOUR INTEREST! PLEASE VISIT OUR E-POSTERS FROM

HOA THANH
J. CHRISTIAN HERTEL
JENS PEJTERSEN
LIN FAN
YASSER NOUR

