Monolithic Capacitive Power Converters Towards Higher Voltage Conversion Ratios

Hans Meyvaert Aki Sarafianos Nicolas Butzen Michiel Steyaert

8 October 2014

Overview

Introduction & Motivation

Capacitive AC-DC Step-Down Approach

High Voltage Conversion Ratio DC-DC Approach

Conclusions

Problem & Facts

Although standby power of individual mains connected appliances is low (<1 W), it represent a significant fraction of global electricity consumption due to the large amount of devices

Consumers:

- TV, VCR, Set-top, Stereo
- Computer
- Kitchen appliances
- External power supplies
- Ceiling fans

Consumption:

Annual Domestic Percentage

- France 2000: 7%
- UK 2004: 8%
- Other: up to 13%

Problem & Facts

Although standby power of individual mains connected appliances is low (<1 W), it represent a significant fraction of global electricity consumption due to the large amount of devices

Consequence:

- Emissions: International Energy Agency attributes 1% of 2007 global CO₂ emissions to vampire power
 - **⇔** 3% CO₂ due global air traffic
 - CO₂ Global warming
 - SO_2 \rightarrow Acid rain
- Fire risk : Heat dissipation

Goal

- Provide low power from the mains with an auxiliary power supply enabling a low loss standby power consumption
 - Main power supply fully off
 - Low cost
 - Low volume
 - Low input power
 - Optimal power throughput

Large Voltage Conversion Ratio Required

Bridging the voltage gap

- 1 Series impedance
 - Resistor
 - Very lossy due to high voltage ratio
 - Series capacitor
 - Lossless in ideal case
 - Large impedance as result of low mains frequency
- V_{AC,low}
- Direct mains connection
 - Stacked voltage domains (high VCR / Extensive stacking)

Overview

Introduction & Motivation

Capacitive AC-DC Step-Down Approach

High Voltage Conversion Ratio DC-DC Approach

Conclusions

A Capacitive AC-DC Step-Down Converter

Ideal model

$$-P_{out} = f(V_{out}, C_{in}, f_{mains}, V_{in})$$

— f_{mains}, V_{in} fixed

$$V_{in}(t) = \sqrt{2}V_{in}sin(2\pi f_{mains}t)$$

$$V_{C_{in}}(t) \approx (\sqrt{2}V_{in} - V_{out})sin(2\pi f_{mains}t)$$

$$i_{C_{in}}(t) = C_{in}\frac{dV_{C_{in}}}{dt}$$

$$= C_{in}(\sqrt{2}V_{in} - V_{out})cos(2\pi f_{mains}t)$$

$$<|i_{C_{in}}|>=4f_{mains}C_{in}(\sqrt{2}V_{in}-V_{out})$$

$$P_{out} = \langle |i_{C_{in}}| \rangle V_{out}$$

Modeling result

- P_{out}(C_{in}) linear
- P_{out}(V_{out}) linear for low V_{DC}

Circuit implementation

2 cases: Fully integrated (μW's), Highly Integrated (mW's)

Chip implementation

Capacitor

- Metal-metal capacitor
- High voltage plate in top metal
- 4μm spacing
- -50 pF

Resistor

- − 6µm to substrate
- Top metals
- Vias
- $-36 k\Omega$

Measurements

- Universal mains
 - $-85-265V_{rms}$
 - 50-60Hz

C_{in}: 50pF

US: 6.4 μW

• EU: 9.5 μW

Measurements

- Universal mains
 - $-85-265V_{rms}$
 - 50-60Hz

C_{in}: 2x 68nF

US: 4.2 mW

EU: 7 mW

Measurements

Reference	[Tamez, Esscirc'10]	Cas	Case 2 (2x68nF)				
Tech node	$0.13 \mu \mathrm{m}$	$0.35 \mu\mathrm{m}$					
V_{RMS}	120V	120V	230V	120V	230V		
f_{mains}	60Hz	60Hz	50Hz	60Hz	50Hz		
Power/area	$0.43 \mu W/mm^2$	$1.06 \mu W/mm^2$	$1.58 \mu W/mm^2$	-	-		
V_{reg}	4V	3.3V					
$t_{on,diode}$	48%	91%	93.5%	91%	93.5%		
$P_{out,max}$	$1.5 \mu W$	$6.4\mu W$	$9.5\mu W$	4.2mW	7mW		

Overview

Introduction & Motivation

Capacitive AC-DC Step-Down Approach

High Voltage Conversion Ratio DC-DC Approach

Conclusions

Concept & Goal

- High voltage conversion ratio from a high input voltage with a monolithic IC
 - **Switched Capacitor approach?**
 - Duty cycle 50%
 - **→** Inductive DC-DC converter : PWM
 - Monolithic integration
 - Voltage domain stacking/serialization

Problem considerations

- What do we <u>need</u> to make a high VCR converter?
 - VCR is topology dependant
 - Min #capacitors set by Fibonacci Limit (Makowski)
 - Higher VCR requires more components
 - Switches & Capacitors
 - Voltage ratings set by topology
 - Control
 - Getting signals from start to finish throughout voltage domains

Problem considerations

What do we have to make a high VCR converter?

Switches

Impact

Low voltage: GO1, GO2, (GO3)

'high' f_{sw} Ok

High voltage: DMOS

'low' f_{sw} only

Capacitors

Low voltage: GOX cap, (MIM cap)

'low' density

High voltage: Fringe cap

'very low' density

Problem considerations

- What do we need to pay attention to in a monolithic high VCR converter?
 - How does VCR influence component requirement?
 - Component rating
 - Component utilization
 - Parasitics related to components
 - Ex. parasitic capacitor coupling to substrate with V_{c,rated}

Where are the loss contributions coming from?

CMOS considerations

- Where are the loss contributions coming from?
 - Intrinsic losses
 - R_{out} related

- Extrinsic losses
 - R_{dyn} related
 - Parasitic capacitor coupling factor
 - Parasitic capacitor swing
 - $M_{sw} = \sum a_{c,i} V_{Cpar,swing,i}^2$

Investigated topologies

Known to have efficient capacitor utilization

(a) Dickson Star 4:1

(c) Fibonacci 5:1

(d) Dickson Star Embedded Cascade 8:2:1

(b) Series parallel 4:1

(e) Doubler 4:1

Topology results

	Dickson Star	Series Parallel	Fibonacci	Dickson Star	Doubler			
	Diekson Star	Series Taraner		Embedded Cascade				
# columns $= k$	k = N - 1	k = N - 1	$Fib_{k+2} = N^{-a}$	$k = \frac{N}{2} - 1^{b}$	$k = 2log_2(N) - 1$			
k_c	$\left[\frac{1}{N} \dots \frac{1}{N}\right]$	$\left[\frac{1}{N}\ldots\frac{1}{N}\right]$	$[Fib_1 \dots Fib_k]$	$\left[\frac{1}{N}\dots\frac{1}{N}\ \frac{1}{4}\ \frac{1}{4}\right]^b$	$\left[\frac{1}{2} \frac{1}{2^2} \frac{1}{2^2} \frac{1}{2^3} \frac{1}{2^3} \dots \frac{1}{2^N} \frac{1}{2^N}\right]$			
$V_{C,rated}$ [V_{out}]	$[1 \ 2 \ 3 \dots N-1]$	$[1\dots 1]$	$[Fib_2 \dots Fib_{k+1}]$	$[2\ 4\ 6\dots(\frac{N}{2}-1)\ 1\ 1]^{\ b}$	$[1\ 2\ 2\ 4\ 4\dots\frac{N}{2}\frac{N}{2}]$			
V_{sw} [V_{out}]	$[1\dots 1]$	$[1\ 2\ 3\dots N\text{-}1]$	$[Fib_1 \dots Fib_k]$	$[2\ldots 2\ 1\ 1]^{\ b}$	$[1 \ 2^1 \ 0 \ 2^2 \ 0 \dots 2^{log_2(N)} \ 0]$			
M_{sw}	$\frac{N-1}{N}$	$\frac{1}{N} \sum_{i=1}^{N-1} i^2$	$\frac{1}{N}\sum_{i=1}^{k}(Fib_i)^3$	$2.5 - \frac{4}{N}$	$\frac{1}{2} + \sum_{i=1}^{(\log_2 N) - 1} 2^{i-1}$			
$K_c = (\sum_{i=1}^{N} k_{c,i})^2$	$(\frac{N-1}{N})^2$				$(\frac{1}{2} + \sum_{i=1}^{(\log_2 N) - 1} 2^{-i})^2$			
$K_c, N = \infty$			1		2.25			
$M_{sw}, N=2$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$			
$M_{sw}, N=4$	$\frac{3}{4}$	3.5	_	1.5	1.5			
$M_{sw}, N = 8$	$\frac{7}{8}$	17.5	4.62	2	3.5			
$M_{sw}, N = 16$	$\frac{15}{16}$	77.5	_	2.25	7.5			
$M_{sw}, N = 64$	$\frac{63}{64}$	1333.5	N = 55 - 89 $220.6 - 578$	2.375	31.5			
$M_{sw}, N = \infty$		∞	∞	2.5	∞			
$a \ Fib_1 = 1, Fib_2 = 1$ $b \ N > 2$ and N even and $\frac{N}{2}$ even								

Topology Simulations

Validation of Dickson Star: η[α], η[VCR]

(a) Dickson Star topology with parasitic reduction at VCR=11, $f_{sw}=10 \mathrm{MHz},~V_{in}=41.7V,~V_{out}=3.3V, P_{out}=40 \mathrm{mW},~C_{tot}=2.9 nF$

(b) Evolution of the converter efficiency with rising voltage conversion ratio, $f_{sw}=10 \mathrm{MHz}, \ \alpha_{par}=3\%, \ V_{out}=2.5V, P_{out}=20 \mathrm{mW}, \ C_{tot}/V_{in}=1.94 nF/19V$ for N=5 to 2.86 nF/100.5V for N=35

Inclusion of practical C_{fly} voltage rating

• Variable VCR; $V_{out}=1.8$, $\gamma=0.88$, $f_{sw}=15MHz$, $P_{out}=20mW$

Inclusion of practical C_{fly} voltage rating

• Variable VCR; $V_{out}=1.8$, $\gamma=0.88$, $f_{sw}=15MHz$, $P_{out}=20mW$

Inclusion of practical C_{fly} voltage rating

• Variable VCR; $V_{out}=1.8$, $\gamma=0.88$, $f_{sw}=15MHz$, $P_{out}=20mW$

Overview

Introduction & Motivation

Capacitive AC-DC Step-Down Approach

High Voltage Conversion Ratio DC-DC Approach

Conclusions

High VCR topology conclusion

- M_{sw} highly volatile over investigated topologies
 - Dickson Star clearly differentiates and outperforms
 - Highest possible capacitance utilization
 - Lowest possible M_{sw} metric (converges!)

Decreasing η drop with increasing VCR

- Good match for CMOS implementation
- Embedded D* Cascade not better than D*
 - Even though it is a single stage conversion

Conclusions

High VCR AND Monolithic integration

- $-\,\alpha_{\text{par}}\,\text{and}\,\,V_{\text{Cpar,swing}}\,\,\text{have}\,\, \frac{\textit{large}}{\textit{large}}\,\,\text{impact on solution}$ space
- Dickson Star topology very promising:
 - Converging f_{ac}
 - Converging M_{sw}
- Large component count no issue

Thank you!

QUESTIONS?

