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Motivation for fully integrated voltage regulators

The Platform Perspective

Courtesy: S. Soman, A. Uan-zo-li; Intel
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Motivation for fully integrated voltage regulators

The Platform Perspective

SoCs inherently require several voltage rails

Input rail consolidation simplifies power delivery significantlyPSoC 2014 Rinkle Jain 4 / 24



Motivation for fully integrated voltage regulators

The Die Side of the Story

[Burton et.al APEC ’14] [Kurd et.al ISSCC ’14]

Faster state transitions by 25%, higher performance per watt

Overall idle power slashed by 20x, battery life improvement by > 50%

Proliferation of Integrated voltage regulators in latest technology node
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Motivation for fully integrated voltage regulators

Finer Grain Voltage Domains
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Figure 6. (a) FMAX recovery for different Adaptive Clock Distribution lengths. 

(b) Power vs. frequency for baseline design, baseline with adaptive clocking, and dual-VCC design with adaptive clocking. 

(c) Energy efficiency vs. VCC. 

(a) 

(b) 

(c) 

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

1 2 3 4 5 6 7 8

FM
ax

 D
e

gr
ad

at
io

n

ACD Delay in Clock Cycles

90% FMAX recovery 

FMAX degradation without 
adaptive clocking 

40% 

0.67V 

0.38V 

27% 

12.4% 

0.8V 

[Tokunaga et.al ISSCC ’14] Measured data

Vmin reduction through many voltage domains

Necessary level shifters incorporated here with 0 area penalty
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Switched Capacitor Voltage Regulator Capability

Switched Capacitor VR with MIM

MIM + 3.5KB RF

MIM + 3.5KB RF

MIM + 3.5KB RF

MIM + 3.5KB RF

SCVR Control

SCVR Power Stage

Probe pads

848 um

269 um

C1 C4

C3C2

power stage

High density MIM

TEM [C.-H. Jan et.al .; IEDM 2012]

Technology 22nm Tri-gate CMOS

Passive Type High Density MIM

MIM Area 99450 µm2

Power Stage Area 3240 µm2

Control Area 420 µm2

Total Active Area 3660 µm2

Total RF Area 101376 µm2

Test Interface Membrane probe

[R. Jain et.al .; JSSC 2014]
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Switched Capacitor Voltage Regulator Capability

Conversion Efficiency Measurements

Vout (V)

99 Ω
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25mW

2:1
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Output Power (mW)

84% peak and 63% minimum efficiency

Lower peaks in other modes due to larger switch size

Flat efficiency down to << 10% rated load with PFM
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Vin

Vout
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Power Cell

S41
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S91

[R. Jain et.al .; JSSC 2014]
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Switched Capacitor Voltage Regulator Capability

Motivation for Conductance Modulation
Vin Vo

m:n

++

--

Rout = f (Rfsl ∝ rdson
d , Rssl ∝ 1

Cfsw
)

Rload

Ve

Ve = Vinn/m

Rout

Averaged Model Efficiency Contours

Limitations of simple frequency modulation

Lower-than-optimal conversion efficiency at lower voltages

Increased output ripple and associated power loss at light loads

Input noise coupling. EMI/RFI due to impulsive current draw

Other knobs: 1/rdson (conductance), C (fly capacitance), d(duty)
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Switched Capacitor Voltage Regulator Capability

Adaptive Widths Architecture

Buffers + 
Level Shifters
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Total transistor size implemented as 3 weighted banks (ratio 2:1:0.25)

8 way interleaving, 2GHz input cloc; 2 bits for width selection
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Switched Capacitor Voltage Regulator Capability

AW Measurements at Constant Vref

fsw < FthW = bW ′

a implies higher efficiency at W’ (W’=W/n)

fsw is a good indicator of low voltage and light load conditions
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Switched Capacitor Voltage Regulator Capability

AW Measurements at different Vref

Rout uniquely defines the optimal width
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Switched Capacitor Voltage Regulator Capability

AW control law: Measurements
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Switched Capacitor Voltage Regulator Capability

AW Conversion Efficiency Measurements
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All three major loss mechanisms scale with load (more than linearly)

Nearly 15% improvement in 2:1 mode
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Switched Capacitor Voltage Regulator Capability

AW Conversion Efficiency Measurements
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Switched Capacitor Voltage Regulator Capability

Capability Summary
Reference 2 3 5 This work
Process 45nm SOI 45nm 32nm SOI 22nm trigate
Passives type Deep trench Gate Oxide SOI Gate Oxide MIM
Maximum frequency 100MHz 30MHz 225MHz 250MHz
Input Voltage 2V 1.8V 2V 1.23V
Output 0.95V/2.7mA 0.8-1V/8mA 0.4-1.1V/0.28A 0.45-1V, 88mA
Power Efficiency % 90 69 81 70@0.55V,84@1.1V
Response time Unregulated 120-200ns Unregulated 3-5ns
Droop - 250mV - ≤25mV
Current densityA/mm2 2.3 0.050 0.73 0.88
Area Overhead 13% 6x 41% 3.6%

All-digital multi-mode SCVR in 22nm tri-gate CMOS

using high-density MIM

Wide voltage range, good conversion efficiency across load

Low area overhead of 3.6%, comparison assumes 30mA, 0.1mm2 load

Fast < 5ns response times

Max VR current density of 400(880) mA/mm2 in 1:1(2:1) modes
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DVFS Enabler

Application

Current capability

At 1V, 2:1 mode: 1.2-1.6A/mm2 (22nm)

Atom at 2.5A/mm2, Graphics at 1.25
A/mm2

Worst case di/dt: atom at 2A/ns ,
Graphics at 150mA/ns

Vin=Vccmax feasible, downconversion is
not a must

Reuse power gates, hybrid solution with
LDO

Minimum active power and area overhead
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Distributed Implementation

Physical Design Constraints

Practical issues: Co-design with load

Graphics: large area, lower power density

lots of signals traverse x and y and x<y

Highly automated design, push button SoC Methodology (unlike core)

Shared metal resources, IR drop on weak grids

Need for distribution

One contiguous VR block ⇒ large keep-out-regions in APR

A stand-alone minimum-size VR tile desired, custom-laid out ok

VR tile should be reuse-able across loads of any size, aspect ratio
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Distributed Implementation

Active Ripple Control Enabling Distribution

Proposed solution

Distributed standalone tiles

Minimal interleaving

Local current mode control

Central PFM to drive all tiles

Vref

Vout

Local current mode control
Load block

Minimum
size VR tile
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Distributed Implementation

Active Ripple Control Enabling Distribution

VR Tile 1 Vout 

VR Tile 2 Vout 

Central feedback sense Vout 

Vref

load step at Tile1
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Distributed Implementation

Active Ripple Control Enabling Distribution

Vref

Central feedback sense 

Tile 2 Vout  
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Distributed Implementation

Active Ripple Mitigation Scheme (ARMS)

Gate voltage of select transistors controlled using diff amplifier

Ideally switch currents match load currents on a cycle by cycle basis

Objective: A frugal design that works across all conversion modes
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Distributed Implementation

Active Ripple Mitigation Scheme (ARMS)

Powerstage Schematic

Adaptive Gate Driver (AD)

Low ‐Bound Hysteretic Control
(LBHC )

ARMS in  2:1 Operation 
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Distributed Implementation

ARMS Ripple Measurements
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Summary and Conclusion

Summary

Point-of-load VR solution for fine grain domains enable power benefits

Fast switched capacitor VRs with low area overhead demonstrated

Capacitance density and ESR dictate SCVR capability, less area with every
node

Hybrid DLDO-SCVR meets medium current density loads, no power penalty

Control techniques ensure optimal efficiency and small VR tiles

Distributed VRs desired for APR-friendly SoC integration for wide adoption

High-current-density loads may have (i) few bumps or platform limitations.
(ii) high di/dt, tighter impedance requirements ⇒ step down IVR

Higher current density VR solutions for small domains are needed!
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Thank you for your attention!
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