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Motivation for fully integrated VRs

Capability of Switched Capacitor Voltage Regulator (SCVR)
DVFS enabler with minimum area-power overhead

Co-design with load

Summary and Conclusion
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o Faster state transitions by 25%, higher performance per watt
y gher p p

o Overall idle power slashed by 20x, battery life improvement by > 50%




Adaptive 22
Clock Dist ‘Adaptation and :
[ o S — '( Resiliency Contral I | NHEIEE] J
A —_ 2 4
== | memgg

g 1.8 4

Execution Unit (EU) = -
81 2 16 -

Input ‘E o
Buffer = § 14 4

|| s| E1
Sl £| Bio.
2 E == 4= =Dual-Vee with droop
1 —8=Dual-vcc with droop and Adaptive Clock
et Baseline with droop (c)
0.8
L
- 03 0.4 0.5 0.6 0.7 0.8 0.9
Vee (V)
[Tokunaga et.al ISSCC '14] Measured data

o Vmin reduction through many voltage domains
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o 84% peak and 63% minimum efficiency

o Lower peaks in other modes due to larger switch size
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e Input noise coupling. EMI/RFI due to impulsive current draw

Other knobs: 1/r4s, (conductance), C (fly capacitance), d(duty)
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Limitations of simple frequency modulation

o Lower-than-optimal conversion efficiency at lower voltages

o Increased output ripple and associated power loss at light loads
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Measured W1 - W2 transition threshold in 3:2 mode with varying V
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o Fy for each width computed from two open loop measurements
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Process 45nm SOI 45nm 32nm SOI 22nm trigate
Passives type Deep trench Gate Oxide SOI | Gate Oxide MIM

Maximum frequency 100MHz 30MHz 225MHz 250MHz

Input Voltage 2V 1.8V 2V 1.23V

Output 0.95V/2.7mA | 0.8-1V/8mA 0.4-1.1V/0.28A | 0.45-1V, 88mA
Power Efficiency % 90 69 81 70@0.55V,84Q1.1V
Response time Unregulated 120-200ns Unregulated 3-5ns

Droop - 250mV - <25mV

Current densityA/mm? | 2.3 0.050 0.73 0.88

Area Overhead 13% 6x 41% 3.6%

o All-digital multi-mode SCVR in 22nm tri-gate CMOS
using high-density MIM

o Wide voltage range, good conversion efficiency across load

o Low area overhead of 3.6%, comparison assumes 30mA, 0.1mm? load
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Practical issues: Co-design with load

Graphics: large area, lower power density
lots of signals traverse x and y and x<y
Highly automated design, push button SoC Methodology (unlike core)

Shared metal resources, IR drop on weak grids

Need for distribution
One contiguous VR block = large keep-out-regions in APR

A stand-alone minimum-size VR tile desired, custom-laid out ok

VR tile should be reuse-able across loads of any size, aspect ratio




Proposed solution
Distributed standalone tiles
Minimal interleaving
Local current mode control

Central PFM to drive all tiles

Load block

Minimum —
size VR tile

Local current mode control




Active Ripple Control Enabling Distribution

Central feedback sense V¢

load step at Tilel

PSoC 2014 Rinkle Jain



Active Ripple Control Enabling Distribution

VR Tile 1 Vout

Central feedback sense Vout

load step at tile 1
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ARMS Control
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Lower bound hysteretic control

o Gate voltage of select transistors controlled using diff amplifier

o ldeally switch currents match load currents on a cycle by cycle basis
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o Point-of-load VR solution for fine grain domains enable power benefits




o Fast switched capacitor VRs with low area overhead demonstrated




o Capacitance density and ESR dictate SCVR capability, less area with every
node




o Hybrid DLDO-SCVR meets medium current density loads, no power penalty




o Control techniques ensure optimal efficiency and small VR tiles




o Distributed VRs desired for APR-friendly SoC integration for wide adoption




o High-current-density loads may have (i) few bumps or platform limitations.
(i) high di/dt, tighter impedance requirements = step down IVR







Thank you for your attention!
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