

Optimizing Power MOSFET Behavior for High Frequency Switching

PwrSoC 2014

Outline

- Why Vertical Silicon MOSFETs?
- What Limits Switching Performance?
- Die Level Optimisations
 - Voltage Overshoots
 - Switching Uniformity
 - Packaging
- Conclusion

Why Vertical Silicon?

Power Density:

- Superior R_{DS(on)}/mm²
 - 30V Vertical silicon ≈5mΩmm²
 - 30V Lateral Si ≈15mΩmm²
 - 30V GaAs ≈14mΩmm²
 - 30V GaN ≈12mΩmm²

Why Vertical Silicon?

1. Power Density:

- Superior R_{DS(on)}/mm²
 - 30V Vertical silicon ≈5mΩmm²
 - 30V Lateral Si ≈15mΩmm²
 - 30V GaAs ≈14mΩmm²
 - 30V GaN ≈12mΩmm²

Reliability

- Proven sub ppm level
 - Effective defectivity screening
 - Low leakage (nAs; GaN 10s μAs)
 - Avalanche & Gate Stress tests

Why Vertical Silicon?

1. Power Density:

- Superior R_{DS(on)}/mm²
 - 30V Vertical silicon ≈5mΩmm²
 - 30V Lateral Si ≈15mΩmm²
 - 30V GaAs ≈14mΩmm²
 - 30V GaN ≈12mΩmm²

2. Reliability

- Proven sub ppm level
 - Effective defectivity screening
 - Low leakage (nAs; GaN 10s μAs)
 - Avalanche & Gate Stress tests

Wafer Cost

- Silicon vertical ≈ Silicon lateral
- GaN ≈ 25x → 4x (?)

Superjunction Trench Power MOSFET Structure s Q Gate **Charge Balance Trench** G s **Vertical DMOS TrenchMOS Thick Bottom**

Oxide TrenchMOS

Pseudo Vertical LDMOS

Charge Balance TrenchMOS

- Most common structure for LV Discrete ≈2008
 - Infineon, Fairchild, On Semi, Vishay, AOS...
- Source Electrode shields Gate from Drain
 - Increased Process Complexity
 - Effective in reducing Q_{GD} but at expense of increasing Q_{OSS}
 - Layout critical to prevent fast dV/dt effects

LV Superjunction TrenchMOS

- First Used for Low Voltage ≈2010
 - Commonly used for 400V 600V
 - NXP (NEC in literature, production?)
 - P-type pillars shield trench sidewall (JFET effect) for low Q_{GD} and gives low Q_{rr}
 - Relaxed cell pitch gives improved linear mode capability

The Problem with Cell Pitch Reduction?

$$Q_G \cdot R_{DS(on)} \approx Q_G (R_{Channel} + R_{Drift})$$

$$Q_G \approx \frac{Area}{Cell\ Pitch}$$

$$R_{Channel} \approx \frac{Cell\ Pitch}{Area}$$

$$R_{Drift} \approx \frac{1}{Area}$$

$$Q_G \cdot R_{DS(on)} \approx 1 + \frac{1}{Cell\ Pitch}$$

Low Sp. $R_{DS(on)}$ and low Q_G FOM are mutually exclusive!

RESURF & Cell Pitch Reduction

$$Q_G \cdot R_{DS(on)} \approx Q_G (R_{Channel} + R_{Drift})$$

$$Q_G \approx \frac{Area}{Cell\ Pitch}$$

$$R_{Channel} \approx \frac{Cell\ Pitch}{Area}$$

$$R_{Drift} pprox rac{Cell\ Pitch}{Area}$$

$$Q_G \cdot R_{DS(on)} \approx 2$$

Low Sp.R_{DS(on)} & Low Q_G FOM are achievable

FOM Benchmarking

All silicon technologies have similar performance, recent 30V GaN devices demonstrate potential of this material

BUT performance FOMs are only part of the story; product design including packaging is critical to get the most out of a technology....

* Datasheet values; includes package resistance

DC-DC Buck Converter

Silicon?

$$\frac{dI_D}{dt} = \frac{I_D \cdot I_G}{Q_{GS2}} \approx 28 \ A/ns$$

$$\frac{dV_{DS}}{dt} = \frac{V_{IN} \cdot I_G}{Q_{GD}} \approx 13 \ V/ns$$

$R_{DS(on)}$	$6.5 m\Omega$	
Q_{GS2}	0.8nC	
Q_{GD}	1.4nC	
$Q_{G(tot)}$	5.5nC	
$V_{GS(th)}$	1.6V	
$V_{GS(pl)}$	2.7V	
$V_{\rm DS},V_{\rm IN}$	12V	
I_{G}	1.5A	
I _G	1.5A 15A	
I _D	15A	
I _D	15A 5V	
I _D V _G L _{package}	15A 5V 0.6nH	

Package?

$$\frac{dI_D}{dt} = \frac{V_G - V_{GS(pl)}}{L_{Package}} \approx 4 \ A/ns$$

$$\frac{dV_{DS}}{dt} = \frac{V_{IN} \cdot I_G}{Q_{GD}} \approx 13 \ V/ns$$

$R_{DS(on)}$	$6.5 \text{m}\Omega$	
Q_{GS2}	0.8nC	
Q_{GD}	1.4nC	
$Q_{G(tot)}$	5.5nC	
$V_{GS(th)}$	1.6V	
$V_{GS(pl)}$	2.7V	
$V_{\rm DS},V_{\rm IN}$	12V	
I_{G}	1.5A	
I_D	15A	
V_{G}	5V	
L _{package}	0.6nH	
L _{total}	2.4nH	
f _{osc}	100MHz	

Circuit?

$$\frac{dI_D}{dt} = \frac{V_{IN}}{L_{total}} \approx 5 \ A/ns$$

$$\frac{dV_{DS}}{dt} = 12 \cdot V_{IN} \cdot f_{osc} \approx 14 \ V/ns$$

R _{DS(on)}	$6.5 m\Omega$	
Q_{GS2}	0.8nC	
Q_{GD}	1.4nC	
$Q_{G(tot)}$	5.5nC	
$V_{GS(th)}$	1.6V	
$V_{GS(pl)}$	2.7V	
$V_{\rm DS},V_{\rm IN}$	12V	
I_{G}	1.5A	
I_D	15A	
V_{G}	5V	
L _{package}	0.6nH	
L_{total}	2.4nH	
f _{osc}	100MHz	

	Silicon	Package	Circuit
dl _D /dt	28 A/ns	4 A/nS	5 A/ns
dV _D /dt	13 V/ns	13 V/nS	14 V/ns

- Silicon is not the limiting factor!
- Approaching situation where circuit parasitics dictate switching speed
- Consequence is excessive voltage overshoots
- Lower Q_{GD} technologies like GaN need improved packaging to be effective

Simulated Reverse Recovery

Body diode stored charge **NOT** major cause of voltage overshoots!

Voltage Transients – Ideal Case

- di/dt and dv/dt set by circuit
 - control FET closes instantaneously
 - Ideal capacitor (no V_{DS} dependency)

$$C_{OSS}(V_{DS}) = C_{OSS}(V_{DS} = 0V)^{m} \sqrt{\frac{v_{j}}{v_{j} + V_{DS}}}$$

$$C_{OSS}(V_{DS}) = C_{OSS}(V_{DS} = 0V)^{m} \sqrt{\frac{v_j}{v_j + V_{DS}}}$$

$$C_{OSS}(V_{DS}) = C_{OSS}(V_{DS} = 0V)^m \sqrt{\frac{v_j}{v_j + V_{DS}}}$$

$$C_{OSS}(V_{DS}) = C_{OSS}(V_{DS} = 0V)^{m} \sqrt{\frac{v_{j}}{v_{j} + V_{DS}}}$$

Modifying C_{oss} 'shape'

Additional on die capacitors have an almost linear C(V_{DS}) behaviour and can be used to improve in nonlinear capacitive behaviour of a design

Impact on efficiency is much less than adding external snubber, or lowering switching speed to reduce voltage overshoots

Results: Device Comparison

	Previous Generation	Current Generation
$R_{\mathrm{DS(on)}}\left(V_{\mathrm{GS}}\!\!=\!\!10V\right)$	$3.3 \mathrm{m}\Omega$	$3.2 \mathrm{m}\Omega$
$R_{DS(on)} (V_{GS} = 4.5V)$	$4.25~\mathrm{m}\Omega$	$4.2~\mathrm{m}\Omega$
$Q_{G}\left(V_{GS}\!\!=\!\!4.5V\right)$	14nC	9.5nC
$C_{OSS}(V_{DS}=15V)$	380pF	755pF
$Q_{OSS}(V_{DS}=15V)$	10.2nC	16.7nC
$Q_G \cdot R_{DS(on)}$	60mΩnC	$40 \text{m}\Omega \text{n}C$
$(Q_G + Q_{OSS}) \cdot R_{DS(on)}$	103mΩnC	110mΩnC

*FOMs include package resistance

Results: Applications Testing

Significant improvement in voltage overshoots due to improved Coss shape

Internal Switching of MOSFET

- Simulation of internal gate structure shows large variation of switching times across a MOSFET
- MOSFETs will still have both low and high R_G parts of the die

After 0.1ns of 5V V_{GS} applied

After 1.06ns of 5V V_{GS} applied

 High RG part still turns on quickly due to low R_G portion of die

After 2.25ns of 5V V_{GS} applied

Can observe see almost
 3V difference in V_{GS} across
 the high R_G die

 Major impact of poor switching uniformity is to give slow turn off, resulting in reduced efficiency

Delay Distributions

- At turn on both designs will quickly
- At turn off, switching is speed is related to the slowest part of the die
 - Lower R_G 5.1x faster than high R_G (R_G values suggested x3.5 difference)

Packaging Evolution

- Discrete Packages limited to <1MHz due to package & layout inductance rather than silicon performance
- Multi-die packaging or embedded die technology with inverted die & clips will enable >1MHz switching

Conclusions

- Vertical silicon offers the best overall solution for DC-DC conversion
 - reliability, cost, footprint, performance
- Switching performance of Power MOSFETs are approaching the natural switching speed of the circuit (i.e. its resonant frequency)
 - (Q_G+Q_{OSS})·R_{DS(on)} becomes most important FOM
 - Low inductance packaging and layout critical
- Fast switching results in high voltage overshoots
 - Non linear behaviour of the C_{oss} means these overshoots ≈3x V_{IN}
 - Voltage rating of the MOSFET can be exceeded
 - Creating a more linear C_{oss}(V_{DS}) can reduce voltage overshoots
- Fast turn off requires low internal R_G to all parts of the die

