

Seamless on-wafer integration of GaN and Si devices for the next generation of power management chips

Tomás Palacios

Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

70 years ago, Silicon came to solve a challenge...

Replacing a bad tube meant checking among ENIAC's 19,000 possibilities.

70 years ago, Silicon came to solve a challenge *and start a revolution*...

The Energy Challenge: "The good news"

tpalacios@mit.edu

Mii

Nitride-based Semiconductors will be key to reduce energy consumption

Outstanding nitride properties:

IIIii

The highest electron velocities! (x2-3 than in Si) The highest electric fields! (x15 than in Si) The highest temperatures! (>x2 than in Si) The highest electron densities! (>x3 than in Si) The highest output powers! (>x40 than in Si) The highest light intensity!

(The highest design flexibility)

tpalacios@mit.edu

IV

С

6

Si

14

Ge

v

Ν

Ρ

15

As

VI

0

8

S

16

Se

ш

в

5

AI

13

Ga

Ш

Zn

Nitrides and the Energy Challenge

Nitrides: the most versatile semiconductor family to address the Energy Challenge...

Solid state lighting

Fueling Icchnologies

0

Power electronics

Hydrogen generation for fuel cells tpalacios@mit.edu

High efficiency solar cells

Efficient computation

Nitrides and the Energy Challenge

Nitrides: the most versatile semiconductor family to address the Energy Challenge...

Solid state lighting

Power electronics

High efficiency solar cells

Hydrogen generation tpalacios@mit.edu

Efficient computation

GaN for Power Electronics

GaN vs Si

For the same

~1000 better

resistance ...

~Much higher

frequency

T_{max} ~ 175C:

requirements

electronics!!

Main parameters in power electronics: •Breakdown voltage Efficiency and size •Specific On-resistance breakdown voltage... **GaN offers** performance than the Si limit **10**² current Si solution R_{on,sp} (mohm-cm²) **10**¹ >×1000 better **10**⁰ Reduced cooling **10**⁻¹ Much smaller size and higher efficiency 10⁻² than traditional power GaN limit 10⁻³ 10³ **10**² V_{bk} (V)

Main differences with Si MOSFETs...

Heteroepitaxy (no cheap GaN bulk substrate) → Si substrate

No doping needed: electrons induced by polarization

AlGaN barrier instead of gate oxide

Non self-aligned gate device

Heterostructures and polarization give new flexibility

-Low breakdown on Si substrates:

-Wafer bow in thick GaN buffers

-Normally-off (Enhancement-mode) devices

AlGaN/GaN on SiC with 2 μm buffer: 1.9kV V.S. AlGaN/GaN on Si with 2 μm buffer: ~ 500V

If the Si substrate limits the breakdown, let's remove the substrate and integrate the GaN transistor with the high voltage package directly...

4" GaN-Si Hybrid Bonded Wafer

IR image

Breakdown voltage

More than 3kV breakdown can be obtained from GaN HEMTs originally designed for 500 V operation

Scaled GaN HEMT Technology

|l|ii

Discrete, Packaged devices for circuit integration

System Demonstrator: Power Electronics for Solid State Lighting

- Magnetic components largest elements in present designs
 - (unreliable) electrolytic capacitors 2nd-largest parts
- Present designs and components yield low switching frequencies (~ 100 kHz) and low power density (< 5W/in³)
 - Must simultaneously address semiconductor device, magnetic component and circuit design issues

	Commercial	ARPA-E ADEPT PowerChip
Efficiency	64 - 83 %	93 %
Switching Frequency	57 - 104 kHz	5-10 MHz
Power Factor	0.73-0.93	0.89
Power Density	< 5 W/in ³	> 50 W/in ³
	CH BOUL	

Circuit Architecture, System Demo

- New circuit architecture for HF grid-interface conversion
 - Facilitates high frequency and miniaturized magnetics
 - High power factor *without* (unreliable) electrolytics
- Key targets achieved (>10x frequency, > 10x power density)

$v_{ac} \bigotimes_{d} (c_{1}) = (c_{R1}) = (c_{R1})$		Commercial	PowerChip
	Efficiency	64 - 83 %	93 %
$ \begin{array}{c} $	Switching Frequency	57 - 104 kHz	5-10 MHz
	Power Factor	0.73-0.93	0.89
	Power Density	< 5 W/in ³	> 50 W/in³ (to 130 W/in ³)

How to achieve higher miniaturization?

Heterogeneous integration:

Microprocessor Power Distribution

Challenges in Microprocessor Power Distribution

2. 50~70% I/O pins in microprocessor

More efficient power distribution scheme is necessary tpalacios@mit.edu

New Architecture for PowerDistribution in Si Microprocessors

Power distribution at high V & low I → Local conversion to low V & high I (Si cannot do it: breakdown & low switching speed)

Integration of Si (100) MOSFET and GaN HEMTs

Integration of III-V HEMTs and Si (100) MOSFETs on 4" hybrid wafer !

Heterogeneous integration:

Advanced hybrid circuits

Unprecedented flexibility for advanced circuit design: GaN

- •High power digital-to-analog converters (DACs)
- •On-wafer wireless transmitters
- •Driver stages for on-wafer optoelectronics
- •Power amplifiers coupled to Si linearizer circuits
- •High speed (high power) differential amplifiers
- •Normally-off power transistors
- •New enhancement-mode power transistors
- •Buffer stages for ultra-low-power electronics
- •Power distribution network in Si electronics tpalacios@mit.edu

14117

Nitrides and Energy...

Nitrides: the most versatile semiconductor family to address the Energy Challenge + Easily integrated in a Si platform + ~\$15B industry today

Nitrides and Energy...

Nitrides: the most versatile semiconductor family to address the Energy Challenge + Easily integrated in a Si platform + ~\$15B industry today

Plii

Future Challenges for GaN

-Widespread use of GaN-on-Si wafers

Solid s

-Take full advantage of extreme materials: AIN and InN -High performance vertical GaN electronic devices -Increase complexity of GaN circuits and systems -Improve magnetic materials

-Reduce dislocations from 10⁸ cm⁻² to <10³ cm⁻²

-How to move from a ~\$15B to a \$100B industry?

Hydrogen generation tpalacios@mit.edu Wireless communication

olar cells

Efficient computation

4182

14117

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 28, NO. 9, SEPTEMBER 2013

A Technology Overview of the PowerChip Development Program

Mohammad Araghchini, *Student Member, IEEE*, Jun Chen, Vicky Doan-Nguyen, Daniel V. Harburg, *Student Member, IEEE*, Donghyun Jin, Jungkwun Kim, Min Soo Kim, Seungbum Lim, *Student Member, IEEE*, Bin Lu, Daniel Piedra, *Student Member, IEEE*, Jizheng Qiu, *Student Member, IEEE*, John Ranson, Min Sun, *Student Member, IEEE*, Xuehong Yu, Hongseok Yun, Mark G. Allen, *Fellow, IEEE*, Jesús A. del Alamo, *Fellow, IEEE*, Gary DesGroseilliers, Florian Herrault, *Member, IEEE*, Jeffrey H. Lang, *Fellow, IEEE*, Christopher G. Levey, *Member, IEEE*, Christopher B. Murray, David Otten, Tomás Palacios, *Member, IEEE*, David J. Perreault, *Fellow, IEEE*, and Charles R. Sullivan, *Senior Member, IEEE*

Gallium Nitride: The Si of the 21st Century?

tpalacios@mit.edu

Шii

Gallium Nitride: The Si of the 21st Century?

Absolutely, yes!! However...

The future \$100B GaN industry is made of wafers that are 99.5% Si...

tpalacios@mit.edu

1417