High Frequency Switching Regulators for High Current Slew Rate Applications

Min Kyu Song, Joseph Sankman, and Dongsheng Brian Ma

Integrated System Design Laboratory The University of Texas at Dallas E-mail: d.ma@utdallas.edu

Outline

- Background and Challenges
- Integrated Design Solution
 - Near Zero Delay Response
 - f_{sw} Synchronization
 - Adaptive Voltage Tracking
 - High-Speed Current Sensing
- Design Examples
- Conclusions

Microprocessor Power Supply Trends

Key Design Consideration: **f**_{SW}

f_{SW} Increase

- To satisfy the Trends: f_{sw} ≈ 0.5~1GHz*
- Dramatic switching power loss increase.
- Significant efficiency drop.

Key Design Consideration: Control Scheme

Key Design Consideration: Control Scheme

• Physical inductor current slew rate limitation. – dI_L/dt

Key Design Consideration: Circuit Architecture

* P. Li et al., "A Delay-Locked Loop Synchronization Scheme for High-Frequency Multiphase Hysteretic DC-DC Converters," IEEE *Journal of Solid-State Circuits*, vol. 44, no. 11, pp. 3131-3145, Nov. 2009.

Conventional Hysteretic Control

- Fixed Hysteresis Window
 - Finite hysteresis window size of V_H-V_L.
 - Hysteresis delay $\propto V_{H}-V_{L}$.

Zero Delay Response at I_o Step-Up

f_{sw} Synchronization

- At V_{CLK} pulse, V_{HYS} is reset to V_{H} .
- V_G turns on instantly when V_{HYS} hits I_L
- V_G remains on until I_L reaches to V_{HYS}.
- The leading edge of DT is synchronized to V_{CLK}.

f_{SW} Synchronization Recovery

Adaptive Voltage Tracking

- As V_{REF} increases, V_{ERR} increases, causing the slope of V_{HYS} to become shallower.
- Sensed I_L takes longer to intersect V_{HYS}, causing an instantaneous duty ratio time change, ∆DT.

I_L-Sensing Limitations on VHF Operation

- Power loss.
 - Wide-bandwidth amplifier required.

Discontinuous.

Wide-bandwidth

amplifier required.

Vo

I₁-Sensing Limitations on VHF Operation

- **Pros:**
 - Continuous I_{L} sensing.
 - No additional power loss from series R.
- Cons:
 - Small DCR.
 - Insufficient current sense gain requires additional wide-bandwidth amplifier.

More power consumption as f_{sw} increases!

Emulated AC+DC Current Sensor

- Split the AC (fast) and DC (slow) portion of I_L, amplify them separately, and combine them together.
- It eliminates the need for a power hungry widebandwidth amplifier in order to amplify the V_{DCRs}.

Example 1*: PMIC for High I_o Slew Rate APs

ZDS Hysteretic Control

- Cycle-by-cycle current sharing.
- 4-phase synchronization

Adaptive transistor sizing with forced-CCM and I_I-sensed burst mode control

*M. Song, J. Sankman, D. Ma, "A 6-A, 40-MHz Four-Phase ZDS Hysteretic DC-DC Converter with 118mV Droop and 230ns Response Time for a 5A/5ns Load Transient," IEEE /SSCC, pp. 80-81, Feb. 2014.

Results: Transient Response

- 5A load step with >1A/1ns slew rate is tested with 2×470nF(10mΩ ESR) filtering output capacitor.
- Forced-CCM operation is temporarily active during the I_o step down.

Performance Comparison

	ISSCC '13 [1]	JSSC '05 [2]	JSSC '09 [3]	This Work
Control	PWM	Hysteretic	Hysteretic	ZDS Hysteretic
Current Sharing	Master-Slave	Cycle-by-Cycle	None	Cycle-by-Cycle
V _{IN (MAX)} (V)	1.2	1.2	4.9	3.3
V _{OUT} (V)	0.6-1.05	0.9	0.86-3.93	0.7-2.5
f _{SW} (MHz) (phases)	100 (×4)	233 (×4)	32-35 (×4)	40 (×4)
L (nH)	8	6.8	110	78
С _{ОИТ} (µF)	0.00187	0.0025	0.2	0.94
I _{MAX} (A)	1.2	0.3	1	6
Load Step (mA/ns)	180 / 800	150/0.1	300 / 30	5000 / 5
1% t _{settle} (ns)	~2000	~30	~350	230
V _{OUT} Droop (%)	6.7% (V _{OUT} =0.9V)	10% (V _{OUT} =0.9V)	10% (V _{OUT} =1.8V)	9.8% (V _{OUT} =1.2V)
Peak Efficiency (%)	82.4	83.2	80	86.1

Example 2*: Envelope Modulator for LTE PAs

- Dual-phase switching converter-only topology.
- Adaptive Voltage Tracking (AVT) control.
 - Fast hysteretic response.
 - Clock sync. for predictable noise

*J. Sankman, M. Song, D. Ma, "A 40-MHz 85.8%-Peak-Efficiency Switching-Converter-Only Dual-Phase Envelope Modulator for 2-W 10-MHz LTE Power Amplifier"," IEEE *VLSI Symp.*, pp. 214-215, June 2014.

Key Results

Conclusion

- Current SoCs face speed bottleneck imposed by slow and bulky power management solutions.
- Strong demands for "smart" power and performance control push the power management to be achieved on-chip.
- As high density, high frequency and high speed become necessary, they create unprecedented design challenges.
- Cross-layer design efforts are needed in order to achieve desired performance breakthroughs.

This work is in part supported by the U.S. National Science Foundation under the research contracts CCF-0844557 and DGE-1147385 and the Semiconductor Research Corporation under the research contract GRC 1836.139.