

A Scalable Distributed Regulator Architecture for the POWER8[™] Microprocessor

Zeynep Deniz et al. IBM Research

2014 IBM Corporation

Outline

- Motivation
- Distributed architecture for integrated voltage regulator (iVRM)
- Challenges of iVRM scaling
- POWER8[™] iVRM design
- Experimental results
- Conclusions

Motivation

- Benefits of per-core DVFS
 - -Performance optimization of multi-core processors (e.g., maximum total power constraint)
 - -Minimize energy/operation for portable systems
- Effectiveness of DVFS depends on how fast voltage transitions are
 - Integrated Voltage Regulators (iVRMs) provide benefit of sub-µs voltage changes at low cost
- Key challenge for iVRM: load current can change from min to max in only a few hundred ps

Choice of Regulator Topology

- iVRM requirements:
 - High power efficiency
 - High current / power density
 - Fast output voltage changes
 - Fast load response time
- Inductor-based [1] and switched-capacitor converters [2] have not yet shown the power density needed for serverclass microprocessor (i.e. I_{load} >100A)
- Linear "op-amp"-like regulators [3] have slow response time

-Alternative: comparator-based (bang-bang) regulators

[1] E. A. Burton et al., Proc. IEEE APEC, Mar. 2014
[2] S. R. Sanders et al., IEEE Trans. Power Electron., Sept. 2013.
[3] M. Saint-Laurent et al., IEEE ISSCC, Feb. 2014.

Comparator-Based Regulator

- High-speed asynchronous comparator amplifies error signals to binary (rail-to-rail) levels
- "Bang-bang" control of PMOS passgate

Benefits of high-gain bang-bang control loop:

- DC load regulation better than 10 mV
- Fast load response time (T_R < 500 ps)
- Power-efficient pre-driver (CMOS inverters)

Challenges/drawbacks:

- Self-generated ripple at 1-2 GHz (need to minimize)
- DC offsets of fast comparators (need to compensate Vtrip)

Earlier Work: Distributed iVRM for DDR3 I/O

- 8 microregulators (UREGs) supply current to common power grid
- Trip point of UREG comparator tuned by local charge pump (CP)
- Central voltage regulator controller (VREGC) provides feedback to charge pumps in form of UP/DOWN currents to form outer loop

[J. F. Bulzacchelli et al., JSSC, April. 2012]

Scaling Challenges: Distribution of UP/DN Currents

- Point-to-point connection of analog UP/DN currents
 - Shielded wiring is required
- Manageable for 8 UREGs but not practical for >100 UREGs

Scaling Challenges: GM-Amplifier

- No simple way of replicating/buffering analog UP/DN currents (w/o degrading accuracy)
- Need to redesign VREGC for each system (different number of outputs)

- Issue: excessive ripple if M0 is sized to supply total load current
- Solution: introduce M0SR to handle DC portion of load current

Master-Slave Control of MOSR Passgates

- Issue: current-starved inverters can amplify small mismatches in UREG duty cycles into large mismatches in M0SR currents
- Solution: use only one current-starved inverter (in "Master")
 - Not attractive for large-scale system, e.g. processor

Scaling Limitations of Previous Design

- Point-to-point distribution of analog UP/DN signals
 - Requires shielded wiring for low noise
- Custom VREGC design optimized for given number of outputs
 - Requires re-design with different number of UREGs
- Master-Slave configuration for slow PFET control is not viable for large scale-ups
 - Low noise distribution of analog gate voltage is difficult in processor environment

Outline

Motivation

- Distributed architecture for integrated voltage regulator (iVRM)
- Challenges of iVRM scaling
- POWER8[™] iVRM Design
- Experimental results
- Conclusions

POWER8TM Voltage Domains

- 4 regulated domains per chiplet (48 total)
- Each iVRM features a Bypass mode (BP)

Scalable Distributed iVRM Architecture

Analog UP/DN currents replaced by digital UPDN codes

External reference voltage used for high precision

[Z. Deniz et al., ISSCC, Feb. 2014]

A Scalable Distributed Regulator Architecture for the POWER8TM Microprocessor

October 6, 2014

IBM Corporation

Voltage Regulator Controller (VREGC)

- Regulated voltage is filtered before sampling to avoid aliasing of high-frequency noise/ripple
- S/H also accomplishes differential to single-ended conversion

Voltage Regulator Controller (VREGC)

Ping-pong architecture for auto-zeroing preamplifiers

Schematic of Basic UREG

Slow Passgate Driver Implementation

Predictive PFET Strength Calibration

PFETStrength = PstateTable • PwidthTable

Micrograph of POWER8[™] Chiplet

- 22nm SOI CMOS
- UREG: 20µm X 64µm (each)
- VREGC: 150µm X 150µm (each)
- Vdd core iVRM overhead <1% of</p> chiplet area
 - Includes Cin (e.g., 90nF for Vdd_in)
 - Excludes Cout (e.g., 750nF for Vdd_core)

Measured DC Voltage versus VID

Measured Absolute Voltage Error

Variation with Vdd_in < 5mV</p>

Output Voltage Stepping

Small steps (e.g., 12.5mV) ensure tracking between domains

A Scalable Distributed Regulator Architecture for the POWER8TM Microprocessor

October 6, 2014 IBM Corporation

Power Efficiency (under High Load)

Peak power efficiency of 90.5% at Vdd_core =1.03V

- Load current = 11.9A
- iVRM power density = 34.5W/mm²

A Scalable Distributed Regulator Architecture for the ${\tt POWER8^{TM}}$ Microprocessor

Normalized Fmax versus Vdd_core

Fmax normalized to its value at Vdd_core =1.05V in bypass mode

DVFS vs. DFS Savings

At 62% of max. core frequency, power with DVFS is 1.8X low than with DFS

Conclusions

- iVRMs enable per-core DVFS for POWER8TM processor
 - First reported integrated voltage regulator system with no off-chip components for server-class processor
- Scalable distributed dual loop architecture
 - UREG building blocks (total of 1764 UREGs per chip)
 - Key features for large scale system
 - Digital distribution of UPDN codes
 - Local RC filtering for slow passgate control
- Measured performance
 - Peak power efficiency of 90.5%
 - Power density of 34.5W/mm²
 - at least 3.5X higher than that of inductor-based or SC converters

Acknowledgements

 Members of IBM Research and IBM Systems and Technology Group for essential design, test, and managerial support

- Michael Sperling
- John Bulzacchelli
- Gregory Still
- Ryan Kruse
- Seongwon Kim
- David Boerstler
- Tilman Gloekler

- Raphael Robertazzi
- Kevin Stawiasz
- Timothy Diemoz
- George English
- David Hui
- Paul Muench
- Joshua Friedrich