Efficient on-chip power conversion for energy harvesting and low-power mobile applications

October 6, 2014

Patrick Mercier

Energy-Efficient Microsystems Group

Application example 1: wearable devices

Application example 2: fine-grain power management

The key challenge...

...in both applications is achieving high power conversion efficiency in very small sizes

Talk outline

- Energy harvesting from the human body
- Switched-capacitor converters: principal challenges
- New switched capacitor topologies that achieve high efficiency over large voltage ranges:
 - Recursive binary
 - Recursive ternary
- Conclusions

Harvesting energy from the human body

Leg motion (~10W) (Bionic Power)

Heel strike (~1W) (MIT)

Thermoelectric (~100µW) (MIT)

External

Implantable

Nanogenerator (~1mW) (Georgia Tech)

Glucose fuel cell (~10μW) (U. Freiburg)

Respiration (~100nW) (U. Wisconsin-Madison)

A (new) energy harvesting source: the endocochlear potential

Challenge: anatomically-miniaturized electrodes limit extractable power to ~2nW

Yes we can!

Chip implementation details:

Technology	0.18 µm CMOS
Supply	0.8 - 1.1 V
Charge-pump	1.4 - 2.2 V
Radio data rate	0.1 - 10 Mbps

Chip-on board small enough to fit in the human mastoid cavity

[Mercier et al., Nature Biotechnology, Dec. 2012]

Endoelectronics chip: EP harvester architecture

Acknowledgements: Saurav Bandyopadhyay, Anantha Chandrakasan, Konstantina Stankovic, Andrew Lysaght

We can extract net positive power!

First boost converter at this power level

Clinical guinea pig experiments - results

First demonstration of an electronic system sustaining itself from a mammalian electrochemical potential!

Size constraints

- The inductor is larger than the chip, and we are dealing with nanowatts!
 - Ultimately limits implant size
- Difficult to integrate in multi-output applications

Talk outline

- Energy harvesting from the human body
- Switched-capacitor converters: principal challenges
- New switched capacitor topologies that achieve high efficiency over large voltage ranges:
 - Recursive binary
 - Recursive ternary
- Conclusions

Switched-capacitor DC-DC converter: inherent size advantage

- 7x higher BOM cost
- 8x larger footprint
- Difficult to integrate on-chip

Capacitor:

- Higher inherent power and energy density
- Easily integrated onchip (e.g., MIM, MOSCAP, deep-trench)

SC problem in DC-DC conversion

SC Efficiency

Higher Number of Ratios Challenge with Conventional SC Topologies

GOAL: would like to re-use available capacitance for all ratios to limit size

PROBLEM:

- No. Of caps and switches increases exponentially
- Each ratio requires a unique arrangement, which is difficult to reuse among other ratios

More ratios requires a Modular topology

Talk outline

- Energy harvesting from the human body
- Switched-capacitor converters: principal challenges
- New switched capacitor topologies that achieve high efficiency over large voltage ranges:
 - Recursive binary
 - Recursive ternary
- Conclusions

Solution part 1: modular reconfiguration

Route V_{out} from 1st cell for 1/2

PROBLEM: Wastes
the capacitance of
the 2nd cell → lower η

Solution part 2: recursive reconfiguration

Cells in parallel for 1/2

Recursive Inter-cell
Connection: 100% of caps
used amongst all ratios

Recursive 3-bit SC

• Adding a third 2:1 SC cell: resolution = $V_{in}/2^3$

Recursive 3-bit SC

Realizing 3/8 ratio

Recursive 3-bit SC: 1/2 Realization

Now 1/8, 3/8, 5/8, 7/8 are realized, how to achieve 1/2 using 3 cells?

Recursive 3-bit SC: 1/4, 3/4 Realization

Now 1/8, 3/8, 5/8, 7/8, and 1/2 are realized, what about 1/4, 3/4?

Recursive 4-bit SC

- A 4-bit Recursive SC topology is implemented
 - Balance between complexity and flat η

Realizing 15-ratio, of high η by:

- > Recursive inter-cell connection for 100% cap utilization
- ➤ Maximizing V_{in} & GND connections
- > Binary relative sizing

4-bit Recursive SC Efficiency vs. V_{out}

Fully Integrated Recursive 4-bit SC Prototype

0.25um 2.5V bulk CMOS MIM ~ 0.9 fF/um²

- >8 2:1 cells are used to enable recursion
- ➤ Cells are binary weighted for optimal relative sizing

[Salem & Mercier, ISSCC 2014]

<u>UC San Diego</u>

Measured Efficiency vs. V_{out}

For same silicon area: widest operating range, highest average efficiency

Talk outline

- Energy harvesting from the human body
- Switched-capacitor converters: principal challenges
- New switched capacitor topologies that achieve high efficiency over large voltage ranges:
 - Recursive binary
 - Recursive ternary
- Conclusions

A new topology: Recursive Ternary SC

Proposed Recursive Ternary SC

Ternary SC: Minimum LSB

- Binary SC LSB ~ Vin/2^N
- Ternary SC LSB ~ Vin/6^N

 Ternary conversion modes **Converter G1 G2** Ratio m/n 1/2 1/2 1/4 3/4 **B[0]** 1/3 1/3 1/9 5/9 B[0]=0 B[0] 1/3 1/3 **B[0] Produces** 2nd 1st sťage stage $\overline{B[0]}$ odd/3² as odd/2² for ½ cell gain

Mixing conversion modes

G1	G2	Converter Ratio m/n	
1/2	1/2	1/4 3/4	
1/3	1/3	1/9 5/9	
2/3	2/3	4/9 8/9	
1/3	2/3	2/9 7/9	
2/3	1/3	2/9 7/9	
1/3	1/2	1/6 6/9	
2/3	1/2	3/9 5/6	
B[0]=0			
B[0]=1 JC San Diego			

Proposed Recursive Ternary SC

 Recursive Ternary incorporates the 3-Ratio Series-Parallel minimal charge sharing loss.

Proposed Recursive Ternary SC

 Recursive Ternary inherits the superior performance of the 3-Ratio Series-Parallel topology

Recursive Ternary SC Prototype

Tech.	0.25µm
Topology	3-stage RT
# of Ratios	45
Area	4.3mm ²
Cap.	2.8nF

- Cells are binary sized
- Bottom row is0º phase
- > Top is 180°

[Salem & Mercier, CICC 2014]

Measured Efficiency vs. V_{out}

Measured Efficiency vs. V_{out}

Conclusions

- Miniaturized & efficient power converters are required for next-generation mobile and energy harvesting applications
- Switched-capacitors offer a route towards miniaturized efficiency
- New modular topologies are presented that achieve a large # of conversion ratios while maintaining the performance benefits of simpler topologies
 - Recursive binary implementation: 15-ratios, 85% peak efficiency, 0.2-2.2V range
 - Recursive ternary implementation: 45-ratios, 86% peak efficiency, 0.2-2.2V range
 - Combines the benefit of RB and 3-ratio SP for best-in-class efficiency

Acknowledgments:

- Energy harvesting: Saurav Bandyopadhyay, Anantha Chandrakasan, Konstantina Stankovic, Andrew Lysaght (MIT/Harvard/MGH/MEEI), SRC IFC/C2S2
- Switched capacitor DC-DC converters: Loai Salem (UCSD)