A Power Management IC with Bi-Directional Current-Mode Control and Partial Power Processing for Concentrating-PV Systems

Mohammad Shawkat Zaman¹, Yue Wen², Ryan Fernandes², Berry Buter¹, Toby Doorn¹, Marcel Dijkstra¹, Henk Jan Bergveld¹, and Olivier Trescases²

> ¹NXP Semiconductors, Eindhoven, Netherlands ²University of Toronto, Ontario, Canada

Introduction to CPV

A CPV system by Morgan Solar

Mismatches in PV Systems

2.5

- Under mismatched conditions, such as partial shading, some cells do not operate at their respective MPP.
- Power degradation due to partial shading also exists in CPV systems.

Measured mismatches in a 6-cell CPV system. Observation: current mismatch > voltage mismatch.

Distributed MPPT vs. ∆-Conversion

Yue Wen, University of Toronto, PWR'SOC 2014

Δ-Conversion

PMIC and PCB

Control Scheme and IC Architecture

c(t)

 $\Delta v_c(t)$

R O

 $1/f_s$

4

- Hysteretic Current-Mode Controller:
 - Analog current loop and digital voltage loop.
 - Switching frequency is imposed by a PLL.
 - > No need for slope compensation.
 - > Inherit current protection.
- Internal Supply Scheme:
 - > On-chip boost converter (10V) to provide driver supply.
 - > Two LVRs (4.3V) provide supplies for mixed-signal circuits.

 $v_c(t)$

 $\Delta v_c(t)$

 $v_c(t)$

 $v_{c-p}(t)$

 $v_{c}(t)$

 $v_{c_p}(t)$

sonso(t)

 $v_{c}(t)$

Low-voltage start-up capability.

 L_{aux} (22 μ H)

Δ -Converter Parameters

Parameter	Value	Unit
Fabrication Process	$1 \ \mu m BCD$	
Chip Size	2.7×3.7	mm ²
Peak Efficiency (Open-loop)	89	%
Closed-loop Switching Frequency, f_s	3.6	MHz
Control Mode	Hyst. Current-Mode	
Operating Voltage at V_{pv}	1.8-6.0	V
Max. Average Inductor Current, I_L	±1.5	A
Auxiliary Boost Voltage, V_{aux}	10	V
Power FET On-resistance, R_{on}	300	mΩ
Main Converter Inductance, L	0.8	μ H
Auxiliary Boost Inductance, L_{aux}	22	μ H

Yue Wen, University of Toronto, PWR'SOC 2014

S. Zaman et.al, "A cell-level power management IC in BCD-SOI for partial power processing in Concentrating-PV systems", ISPSD 2014.

Experimental Results

Chip micrograph. The die measures 2.7×3.7 mm². Yue Wen, University of Toronto, PWR'SOC 2014 Increase in PV power with Δ -converter PMIC.