

The World Leader in High Performance Signal Processing Solutions

High Bandwidth Low Insertion Loss Solenoid Transformers Using FeCoB Multilayer

Xing Xing, Baoxing Chen 11/18/2012 Analog Devices Inc., Wilmington, USA

Outline

Introduction

- Magnetic core transformer integration
- Developing the Next Generation of isoPower

🔶 Design

- Converter Design
- Transformer Design
- Fabrication
- Inductor Modeling, Testing & Results
- Magnetics and Permeability
 - Multilayer study
 - Testing
 - Discussion
 - Saturation Current
- Transformer Performance
 - One side
 - Coupling
- Conclusion

Introduction

Magnetic layers enclosing spirals

- Complex core structure
 - Limited magnetic permeability
 - Difficulty in domain alignment controlling
 - Significant core loss

- Windings enclosing magnetic core
 Via complexity
- Simple core structure
 - Higher permeability
 - Easy domain signment

Limited bysic sis loss

Developing the Next Generation of *iso* **Power** Magnetic Core *i*Coupler® Transformers

Discrete solutions with optocouplers and external transformers are <u>Large</u>, <u>Custom</u> designs with <u>Poor</u> <u>Reliability.</u>

Proprietary *iso*Power integrates data & power in <u>one</u> package.

Today's air core transformers will be replaced with <u>magnetic</u> <u>core transformers</u>.

Magnetic Core iso Power

- Better Efficiency & Power
- Low Noise Emissions (EMI)

Converter Design Goal

Design Goal				
Architecture	Fly-back DC/DC Converter			
Input Voltage	3 Volt			
Output Voltage	3 Volt			
Frequency	20 MHz			
Power	1 Watt			
Inductance	120 nH			
Peak Current	0.75 Amp			

$$V_{IN} = L_p \frac{I_2 - I_1}{DT}$$
$$I_{Load} = D \frac{(I_1 + I_2)}{2}$$

Fabrication

8

DEVICES

On-wafer Measurement

$$[S] \rightarrow [Y] \implies [Y_{de-embed}] = [Y_{DUT}] - [Y_{PAD}]$$
$$\implies [Y_{de-embed}] \rightarrow [Z_{de-embed}]$$

REF4

Inductor

$$L = \frac{1}{\omega} \cdot Im \frac{-1}{Y_{12}} \quad Q = -\frac{Im(Y_{11})}{Re(Y_{11})} \quad R_s = Re(\frac{-1}{Y_{12}})$$

Transformer

$$L_{1} = \frac{\text{Im}(Z_{11})}{\omega} \quad R_{1} = \text{Re}(Z_{11}) \quad Q_{1} = \frac{\omega L_{1}}{R_{1}}$$

$$L_{2} = \frac{\text{Im}(Z_{22})}{\omega} \quad R_{2} = \text{Re}(Z_{22}) \quad Q_{2} = \frac{\omega L_{2}}{R_{2}}$$

Inductor Results

- Enhancement due to the magnetic core
- Inductance ~ 65nH at 20MHz
 9.3X of the air-core
- Quality factor ~ 8 at 20MHz; 11.5 at 50MHz
 8.7X of the air-core
- Magnetic permeability of FeCoB multilayer ~ 100

Magnetics

- FeCoB/Al₂O₃ multilayer
 - Reduced FMR linewidth
 - \rightarrow Lower eddy current loss
 - 6nm Al₂O₃ spacer
 - →Minimum thickness above which the anti-ferromagnetic coupling between neighboring FeCoB layers disappears
 - \rightarrow Very low coercive field
 - \rightarrow Very low hysteresis loss
 - Magnetic annealing
 - →Extremely low hysteresis loss along hard axis

◆ [FeCoB (500nm)+Al₂O₃ (6nm)] × 6

Permeability Measurement

Testing system

- Vector network analyzer
- Waveguide
- External magnetic field generator

♦ S11 & S12

• Magnetic film absorbs microwave energy at frequency *f*, under bias field *B*.

Substrate Surface Condition Dependency of Permeability and Inductance

	200 nm single layer, on bare Si	500 nm single layer, on bare Si	[FeCoB 500 nm/Al ₂ O ₃ 6 nm]X6, on bare Si	500 nm single layer, on PI/Si	500 nm single layer, on Pl/Cu stripes/Pl/Si
Relative Permeability	<u>750</u>	<u>350</u>	350	200	<u>100</u>
Inductance of 3um thick core (nH)	<u>470</u>	<u>200</u>	200	115	<u>65</u>

- Permeability decreases as the single layer thickness increases.
- Permeability decreases due to the poor flatness and smoothness of the polyimide surface on which the magnetic deposition was performed.
- [FeCoB 200 nm/Al₂O₃ 6 nm]X15 deposited on an appropriately planarized polyimide surface is able to produce an inductance of 470 nH.
- Future work: polyimide surface planarization before magnetic deposition

Saturation Current

- The magnetic material tends to get magnetically saturated when the field exceeds a critical value.
- ◆ The saturation magnetization of FeCoB is 4∏Ms=1.5Tesla.
- The magnetic core stops contributing to the inductance when it gets saturated -μ~1.
- Higher initial permeability → lower saturation current in the coil
- The saturation current at 70%Ms is estimated to be 1.4 Amp for Inductor Type I.

Saturation Current Modeling of [FeCoB 500 nm/Al₂O₃ 6 nm]X6 Core

Total Magnetic Flux vs. Time

0.4

Time (us)

0.6

0.8

Input Current vs. Induced Voltage

60.00

50.00

Total Flux (nWb) 20.00 20.00 20.00 10.00 20.00

0.00

0

0.2

Transformer Performance – Looking at One Side

- Transformer II: highest inductance, ~ 53nH; highest total loss due to denser flux; quality factor of 2.7 at 20MHz.
- Transformer III: slightly higher inductance (~ 35.3nH) & resistance than I (~ 33.5nH), due to shape anisotropy inside core.
- Transformer IV: inductance ~ 12nH, due to small core width

Transformer Performance – Coupling

- Transformer II: low coupling constant of 0.1 due to separated windings.
- Transformer III: strongest coupling (~ 0.9) & lowest minimum insertion loss (-7dB at 20MHz).
- Transformer IV: poor coupling, no like bulk magnetic core

Reference

- [1] T. O'Donnell, N. Wang, M. Brunet, S. Roy, S., A. Connell, J. Power, C O'Mathuna, P. McCloskey, Thin film micro-transformers for future power conversion, IEEE Applied Power Electronics Conference, pp. 939-944 (2004).
- [2] C. H. Ahn, Y. J. Kim, and M. G. Allen, A fully integrated planar toroidal inductor with a micromachined nickel-iron magnetic bar, IEEE Trans. Comp., Packag., Manufact. Technol. A, no. 3, pp. 463–469, Sept. (1994).
- [3] X. Xing, et al, RF Magnetic Properties of FeCoB/Al2O3/FeCoB Structure with Varied Al2O3 Thickness, Magnetics, IEEE Transactions on 47 (10), 3104-3107 (2011)
- [4] X. Xing, Soft Magnetic Materials and Devices on Energy Applications, PhD Dissertation, (2011).
- [5] M. Yamaguchi, M. Baba, K. Suezawa, T. Moizumi, K. I. Arai, A. Haga, Y. Shimada, S. Tanabe, And K. Itoh, Improved RF Integrated Magnetic Thin-Film Inductors by Means of Micro Slits and Surface Planarization Techniques, IEEE TRANS. MAGN., BOL. 36, NO. 5, SEPTEMBER (2000).
- [6] G. Grandi, M. K. Kazimierczuk, A. Massarini, U. Reggiani, and G. Sancineto, Model of Laminated Iron-Core Inductors for High Frequencies, IEEE Trans. Magn., VOL. 40, NO. 4 (2004).
- [7] M. K. Kazimierczuk, G. Sancineto, G. Grandi, U. Reggiani, and A. Massarini, High-Frequency Small-Signal Model of Ferrite Core Inductors, IEEE Trans. Magn., VOL. 35, pp. 4185–4191 (1999).
- [8] David C. et al, LATERAL MICROWAVE TRANSFORMERS AND INDUCTORS IMPLEMENTED IN A Si/SiGe HBT PROCESS.
- [9] D. W. Lee, K. Hwang, and S. X. Wang, Fabrication and analysis of high performance integrated solenoid inductor with magnetic core, IEEE TRANS. Magnetics, pp. 4089-4095, VOL. 44, November (2008).

Conclusion

- Fly-back DC/DC converter
- Four solenoid integrated transformers with FeCoB multilayer cores
 - Different winding
 - Different core structures
- → 3µm FeCoB/Al₂O₃ multilayer film → a factor of 9.3 and 8.7 improvements in the inductance and quality factor, respectively

Material study on the FeCoB/Al₂O₃

- Multilayer film has reduced eddy current loss
- [FeCoB 500 nm/Al₂O₃ 6 nm]X6 has very small hysteresis loss
- permeability of the magnetic thin films depends very much on the substrate surface roughness.
- Saturation current
- Transformer III interleaved winding and sliced magnetic core, exhibited the lowest insertion loss as well as the best comprehensive performance.
 - Polyimide surface planarization before magnetic deposition.

