Quilt Packaging[®] Microchip Interconnect Technology

18 November 2012

Jason M. Kulick President, Co-Founder Indiana Integrated Circuits, LLC

Indiana Integrated Circuits LLC

Overview

- Introduction to IIC
- Quilt Packaging (QP)
 - Concept
 - Electrical Performance
 - Fabrication
 - Advantages
- IIC as an R&D partner

Quilt Packaging (QP) Technology

- Edge-connections joined to create multi-chip "quilt," developed at Notre Dame
- "Monolithic" assemblies from same or disparate materials & process technologies
- Enables optimization for cost and functionality
- Alternative or complementary technology
- Industry-standard tools and fabrication processes

QP-Interconnect Structures

- Edge connection structures called "nodules"
- Solid metal, typically 10-200 um wide, ~ 20-50 um thick
- Customizable shapes-including interlocking-enables sub-micron chip alignment

QP Customizable I/O

Indiana Integrated Circuits

Sub-Micron Chip Alignment

Interior (left) of four-chip quilt (above)

QP enable extremely accurate alignment

— = 30 micron

QP Microwave Performance

Less than 0.1 dB insertion loss from 50 MHz past 100 GHz, with no resonances. Recent unpublished results under 0.9 dB at 180 GHz

QP Eye diagrams

- Measurement of 12 Gb/s eye pattern (Anritsu MP1763B)
 - Horiz. 100 mV/div
 - Vert. 20 ps/div
- Data stream: 2³¹-1 pseudorandom bit sequence
- Nearly ideal interconnect performance; indistinguishable from PG.
- Error-free operation
 - SNR (Q) = 12.9 for pattern generator alone, 12.4 after chip-to-chip interconnect

Indiana Integrated Circuits

QP Time-Domain Performance

/oltage (V)

- Single-ended GSG CPW configuration
- Picosecond Pulse Labs 4022 TDR pulse enhancement module:
 < 9 ps risetime
- Total delay including probe pads, launcher: 7 ps (820 µm length)
- Delay due to QP nodules: 2.7 ps

Time (ps)

100 μm nodule compared with pads/launcher, GSG

Advantages of Quilt Packaging

- Optimized integration of disparate materials and process technologies (Si, GaAs, GaN, AlN, more)
- Chip partitioning for optimal yield/functionality
- Increased cross-sectional area vs. WBs, bumps
- Better thermal management & failure modes compared to WB
- Reduced design time due to applicability of current 2-D tools, design re-use
- IP flexibility, security

QP Process Flow Overview

- Very similar to "via-middle" TSV process
- Utilizes industry-standard tools & processes
- At least 2 additional mask steps
 - Nodule definition
 - Separation
- Most unique feature is dry etch step for singulation
- After assembly, handle as if "normal" chip

QP Fabrication-Nodule Definition

QP Fabrication- Nodule Metallization

QP Fabrication-Die Singulation

QP Assembly

- Multiple approaches to connecting die
 - Solder, solder paste, and reflow
 - Laser welding
 - Solder-free (gold coating, epoxy in place)
- Can be automated with modifications to pick & place tools
 - Sub-micron chip-to-chip alignment

"3D-QP" and "Interposers"

- QP can enable multiple
 3D configurations
- 3D-QP retains many advantages of 2D-QP
- "Quilting" interposers can decrease formfactor
- Systems benefit from QP without having to redesign chips

Indiana Integrated Circuits LLC

IIC Fabrication Services

Contract R&D Experience:

- Materials Deposition
- E-Beam Lithography
- Specialty Plating
- DRIE & ICP etching
- IC & MEMs prototyping
- Magnetics/nanomagnetic fabrication & testing
- SEM, AFM, EDX, FIB analysis
- CMP & wafer grinding

Additional Material

- Kulick, J.M. & Bernstein G.H, Quilt Packaging: A Revolutionary & Flexible Approach to High Performance System-in-Package; IMAPS Advancing Microelectronics, March/April 2012, pp. 12-16
- Kopp, et al. Quilt Packaging of RF Systems with Ultrawide Bandwidths, Proc. 2009 IMAPS-RF Packaging Conference, San Diego, CA, September 2009.
- Bernstein, et al. "Quilt Packaging: High-Density, High-Speed Interchip Communications," *IEEE Transactions on Advanced Packaging*, Vol. No. 4, Nov. 2007, pp. 731-740.
- D. Marino and K. Skadron. "Reducing Power and Area by Interconnecting Memory Controllers to Memory Ranks with RF Coplanar Waveguides on the Same Package." Proceedings of the 3rd Workshop on Energy-Efficient Design (WEED), in conjunction with ISCA, June 2011.
- Shenai, K., "Heterogeneous Integration of DC-DC Power Converters," Proc. IEEE EDSSC Conference, Hong Kong, Dec. 2010M.
- Shenai, et. al. "Efficient Integrated DC-DC Power Converters—Advanced Technologies and New Challenges," IEEE Energytech, Cleveland, OH, May 2011
- E. Brookner, "Never Ending Saga of Phased Array Breakthroughs", IEEE Microwaves Journal, (2008).

Thank You!

For More Information Contact:

Jason Kulick

jason.kulick@indianaic.com

(574) 217-4612

And/or visit: <u>www.indianaic.com</u>

