

Potential Benefits of Integrated Switching Power Converters: Inductive vs. Switched-Capacitor

Gerard Villar Piqué, Ravi Karadi

Mixed-Signal Circuits and Systems, Research, NXP Semiconductors November, 18th, 2012

Outline

- Introduction: distributed power systems
- State of the art
- Scalability of inductive power converters
- Scalability of switched-capacitor power converters
- Multiphase designs
- Conclusions

Introduction

Introduction: Power distributed systems

Case 1: One converter per voltage domain

- Efficient generation of different voltage domains
- Adaptability to different specs per block
- ■Low power converters

Introduction: Power distributed systems

Case 2: Multiple converters per voltage domain

- ■Efficient generation of different voltage domains
- Adaptability to different specs per block
- Local regulation

- ■Better power distribution
- Even lower power per converter

Requirements

State of the art

State of the art: fully integrated converters

No clear advantage in performance

State of the art: fully integrated converters

Inductive designs always focus on high power

Scalability of inductive converters

x modules

Scalability of inductive converters (I)

Split the converter into 'x' modules:

Scale size of L & C_o, to keep constant ∆V_o at constant f_s:

$$-C_o \rightarrow C_o/\chi$$

-L $\rightarrow \chi *L$ (reduce area but increase inductance)

•Inductor current RMS for CCM buck converter:

$$I_L^2 = I_o^2 + \frac{V_o^2 (V_{in} - V_o)^2}{12V_{in}^2 f_s^2 L^2} \xrightarrow{I_o \to \frac{I_o}{x}; L \to xL} I_L^2 \sim \frac{1}{x^2}$$
 \rightarrow Also applies to DCM

•The switches should also be scaled:

•
$$R_{on} \rightarrow x * R_{on}$$
; $I_{NMOS} \& I_{PMOS} RMS \text{ reduces by } x^2 \rightarrow \frac{P_{NMOS,PMOS} \sim \frac{1}{x}}{x}$

•Switching losses should also reduce with the size of the components (keeping f_s constant)

$$\rightarrow P_{sw} \sim \frac{1}{x}$$

Scalability of inductive converters (II)

Efficiency:
$$\eta = \frac{P_o}{P_o + P_L + P_{N,P} + P_{sw}}$$

•Inductor conduction losses:
$$P_{L} \sim \frac{1}{x} \xrightarrow{P_{L} = I_{L}^{2} R_{L}} R_{L} \sim x$$

To keep a constant efficiency, the inductor resistance should be proportional to the number of modules (x), so that the inductor losses reduce with the same factor.

Scalability of inductive converters (III)

Example with planar spiral inductors:

Scalability of inductive converters (III)

Efficiency of inductive converters will drop when scaling down output power and size

Inductive converters moving to DCM...

Increasing switching frequency reduces current ripple at the cost of switching losses increase

High number of modules

<u> Discontinuous Conduction M</u>ode

f•High RMS value i_L(t) → P_{cond} ↑ •Zero-current switching → P_{sw}↓

Edge DCM ↔ CCM

Right Toff phase duration:

Very few dedicated i_L=0 detection circuits found for fully integrated inductive converters

Scalability of switched-capacitor converters

Scalability of switched-capacitor converters (I)

Split the converter into 'x' modules:

Scale size of C_o, to keep constant ∆V_o at constant f_s:

$$\Delta V_o = \frac{I_o}{f_s C_o} \xrightarrow{I_o \xrightarrow{\chi} : C_o \xrightarrow{\chi}} \Delta V_o = ct.$$

Output impedance:

$$R_{out} = \sqrt{\left(\frac{m}{f_s C_{fl}}\right)^2 + (pR_{on})^2} \xrightarrow{R_{on} \to xR_{on}; C_{fl} \to \frac{C_{fl}}{x}} R_{out} \sim x$$

Output power:

$$P_o = MV_{in}I_o - I_o^2R_{out} = \frac{I_o \rightarrow \frac{I_o}{\chi}; R_{out} \rightarrow \chi R_{out}}{R_{out}}$$

Scalability of switched-capacitor converters (II)

Conduction losses:

$$P_{cond} = I_o^2 R_{out} \xrightarrow{I_o \to x R_{out} \to x R_{out}} P_{cond} \sim \frac{1}{x}$$

■'Bottom-plate' losses:

$$P_{bot} = f_s V_{in}^2 C_{bot} \xrightarrow{C_{bot}} P_{bot} \sim \frac{1}{x}$$

■Since switches become smaller driving switching losses will also scale down: $P_{sw} \sim \frac{1}{x}$

Efficiency of switched-capacitor converters will remain constant when scaling output power and size

$$\eta = \frac{P_o}{P_o + P_{cond} + P_{bot} + P_{sw}}$$

Multiphase designs

Multiphase has been applied to inductive & SC

Switched-capacitor:

41 modules → Each module*1:

- I₀=200μA
- ■V_{in}=1.6V
- ■V₀=0.7V
- •η=78%
- ■0.004mm²

$$C_o = C_T - \frac{C_T}{x} \rightarrow \Delta V_o = \frac{I_o}{f_s C_T (x - 1)}$$

^{*1} Gerard Villar Piqué; ISSCC'12

Multiphase has been applied to inductive & SC

Output capacitance is also determined by the required output impedance

Only applicable to power distribution case 2 (shared output node)

Conclusions

Conclusions

- No clear advantage for either kind of converter in terms of efficiency vs. power density.
- All the reported integrated inductive converters concentrate in the high range of output power.
- Inductive converters don't scale size and output power as well as switched capacitor converters.
- Switched-capacitor power converters look more promising for distributed power supplies.
- Multiphase approach improves the performance of both kind of converters but it can not always be applied.

Thank You!

Acknowledgements:

- Henk Jan Bergveld
- Patrick Smeets
- Dick Buthker
- Leo Warmerdam

