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Power delivery in mobile and server

systems look similar
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Problems with conventional
off-chip power delivery

* |nefficient energy usage

e Board area and cost



Problem 1: Sharing single voltage
across multiple cores wastes energy
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But... complex board design/cost for
per-core voltage control
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Problem 2: Inefficient SoC energy usage with
slow (us) voltage scaling
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Problem 3: Requires large PCB area
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Solution: Replace off-chip VRs with IVRs



Advantage 1: IVR saves SoC energy
with per-core voltage control
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Per-core voltage control simplifies
otherwise complex board design

Reduce off-chip VR
with bulky passive
elements

Integrate IVRs and
cores together in a
single die

Multiple copies of
IVRs for per-core
voltage control
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Advantage 2: IVR saves SoC power via
nanosecond-scale voltage scaling
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IVR offers 1000x faster voltage scaling

L.T. Clark et al, JSSC 2001 W. Kim et al, ISSCC 2011
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Architectural simulations show 20-30%

power savings with fast, per-core DVFS
Fast DVFS
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Advantage 3: IVR reduces PCB area
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voltage divider w/o
inductor

Conventional Integrated Voltage Regulators
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Advantage 4: Distribute power at high
voltage and low current to reduce IR loss

Processor

Especially important for high performance server systems
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Opportunity 1: Leverage architecture
& SW to combat voltage noise

Better Performance
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Performance gained by reducing
voltage noise margins
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Buck converter

buck

 Wide output voltage
range

e Large inductor difficult
for on-die integration
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Switch-capacitor converter

e No inductor

* High efficiency for o

output voltages that
are integer ratios of
the input voltage

(e.g.,1/2,1/3, 2/3)

switched-capacitor (SC)
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3-Level VR: Hybrid of buck and

switched-cap

W. Kim et al, ISSCC 2011 & JSSC 2012

 Requires smaller
inductor than buck
(2x switching
frequency & % swing)

 Can generate wide
range of output
voltages
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* UMC 130nm CMOS

* Integrated spiral inductors
(1nH)

e 2.4V to 0.4-1.4V conversion

e 0.9A max load current

W. Kim et al, ISSCC 2011
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Nanosecond-scale voltage transition
(open loop)
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U
Current (A) 0.05 0.15 0.3

Output Voltage (V)

Efficiency = Pour/ Pin
= Pout / (Pout + PLoss)

Pout increases with output voltage

PLoss increases as duty cycle deviates from 50%
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Comparison to buck (simulated)
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Comparison to SC (simulated)
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Summary of design

* Generate 0.4-1.4V output voltage

* Nanosecond-scale voltage scaling

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

;e ~80% peak efficiency

* 3mm? die area for 1A delivery

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

Room for improvement!



On-going IVR projects in
TSMC 40nm CMOS

 3-level IVR ver.2
= Pads for
mounting SMT
inductors
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" Dual-loop control

* |VR for Robobee
brain chip
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Increase efficiency by mounting
SMT inductors on top of the die?

on-chip spiral inductor
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Murata 1nH 0201 inductors
(chip coil. HF thin film, DCR=0.1ohms)
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Input Voltage = 1.8V

fficiency (%)
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Simulated efficiency w/ SMT inductors and TSMC 40nm CMQOS,
1.8mm x 0.8mm, ~1W/mm? @ V, =1V
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Brain IC
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PZT actuators: 3.7V = 300V boost
Brain IC: 3.7V = 0.9V

Objective: C

Embed brain and power
electronics into body scaffold
with minimal size and weight
overheads
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Future directions

* Explore different packaging/process
technologies to improve IVRs
= SMT passives on top of die
= Package/System-in-Package (P/SiP)
= 2.5D silicon interposers
= 3D stacking

* Architectural IVR models to facilitate
design-space exploration
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