3D Integrated Voltage Regulator Architectures

Noah Sturcken, Ryan Davies, Cheng, Cheng, Bill Bailey, Ken Shepard

Columbia University

Collaborators:

Naigang Wang, Eugene O' Sullivan, Phil Herget, Buck Webb, Luby Romankiw Robert Fontana, Bill Gallagher IBM Research

High-performance processor (40%)

Mobile platform (20%)

Scaling challenges

Energy-efficient operation requires aggressive, granular voltage scaling with the exploitation of parallelism. Potentially hundreds of voltage domains required, operating typically < 0.5 V.</p>

Typical motherboard configuration

Power supplies in packages (PSIP)

- Isotropic bulk magnetics
- Densities of 40 mA/mm³
- Single output
 - **3D integration**
 - Thin-film magnetics
 - 100 A +
 - Multiple outputs

Monolithic integration?

Outline

Converter specifications such as:

Input voltage Maximum load current Maximum load step and load step time constant Maximum transient overshoot

depend on co-design of:

Power inductors

Circuits (power train and controllers)
Packaging

Thin-film inductors

- Structures
 - Yoke-based. Magnetic material surrounds windings.
 - Toroid. Magnetic material core
- Materials
 - Ni₈₀Fe₂₀, Ni₄₅Fe₅₅, CoZrTa, FeN, CoFe, powder composites
 - Electroplating, sputtering, packing

B.Orlando, STMicroelectronics

M. Wang, UF, 2010

Test site: Overview **Control logic, switches, trench capacitors on SoC** processor chip Magnetic inductors on interposer Schematic cross-section view: Cayuga SoC chip Wirebond pads C4 bumps **Cayuga Interposer with Inductors** ~2 mm Top down view of Cayuga interposer layout

[Inductor structures

Magnetic material properties

- Magnetic hysteresis loops measured by vibrating sample magnetometry (VSM)
- Coercivity of 0.2 Oe
- Saturation magnetization of 1.5 T
- Anisotropy field of 13 Oe.
- Inductor long and skinny to maximize magnetic field orientation along hard axis.

Magnetic material properties

- Complex permeability spectrum obtained by measuring the the impedance of a single-stripe loop fixture loaded with Ni₄₅Fe₅₅
- As the thickness of the film increases, the permeability decreases due to shape anisotropy in the thicker films.
- The roll-off frequency also decreases with increasing thickness due to eddy currents from 200 MHz to 50 MHz.

Measured Coupled Inductors Design

- Ni₄₅Fe₅₅ core, amenable to electroplating
- Currently, no insulation laminations to suppress eddy currents and domain wall motion; but work on this is proceeding

SoC: Overview

- Chip Specs
 - IBM 45nm, 4mm X 4mm, C4 IO
- 64 Tile NoC
 - Clock Gating, Diagnostics, DVFS
- 8-Phase Buck DC-DC Converter
 - Fast inner control loop (step response)
 - Digital outer control loop
 - (adjustable load-line)
- Power Density
 - 8-phase topology reduces required C_{out}, boosts current density ~1.2X
 - Flip-chip packaging reduces package impedances, improves efficiency
- Inductors
 - Designed to mate with interposer inductors for complete integrated power chipstack, also can incorporate package SMT air-core inductors

- Two control loops, a slow voltage-mode outer loop that provides lowfrequency regulation and a fast inner loop that responds to highfrequency load transients.
- Digital pulse-width modulator (DPWM) receives a voltage identifier code (VID) – resolution of 250 ps as determined by on-chip clock reference.
- The compensator for the outer feed back loop is a low-pass filter with programmable pole frequency, chosen 10 to 16 times Nfs

Cayuga SoC Test Chip: Controller

V_{PWM} drives an RC filter to generate the inner reference voltage, *V_{REF,I}*, while the bridge output voltage for each phase, *V_{BRIDGE}*, drives another RC filter to generate the inner feedback voltage, *V_{FB,I}*

In steady state, V_{FB,I} will slew behind V_{REF,I} and the resultant evaluation of the comparator causes V_{BRID}_{GE} to closely track V_{PWM}.

Steady-state amplitude of 150 mV

In the event of a large load current transient, the error in the output voltage, V_{OUT}, will couple across C_{FB} onto V_{FB,I} and the comparator will react immediately to reduce overshoot in V_{OUT}.

[Interposer Design

- C4 connection to IC, bond wire connection to BGA package (2.5D)
- Quick/cheap method to demonstrate integrated power chip-stack
- Thru-Silicon-Vias (TSV) in future interposer design (will be compatible with C4 package)

Inductor topologies considered

- Case 1. Four uncoupled two-turn inductors
- Case 2. Eight single-turn coupled inductors

- Case 3. Eight two-turn coupled inductors
- Case 4. Two sets of four single-turn coupled inductors

Converter efficiency

- Efficiency as a function of load current at 100 MHz switching frequency
- Type 2 design clearly the most efficient.
- Type 1 clearly falls off rapidly with current; problem of no coupling and saturating magnetization.

Chip Stack Results

- Efficiency given as function of load current, switching frequency, and output voltage.
- Initial results with peak efficiency (conversion ratio of 0.61, frequency of 75 MHz) of ~74% at FEOL current density of 10A/mm² and interposer current density of ~1A/mm²

Losses in converter

- Inductors are primary source of loss. At peak efficiency, inductor DC and AC losses contribute approximately 19% and 40% of the total power loss, respectively, while switching and conduction of the bridge FETs contribute 25%.
- Addition of laminated magnetic core will reduce losses, suppressing eddy currents and domain wall motion

1 V output voltage, 3A output current

Voltage ripple

- Output voltage ripple as a function of duty cycle at 100 MHz switching frequency
- Peak voltage ripple is 14 mV peak-to-peak
- Reaches minimum at mod(D,1/8)=0 when inductor current ripple nearly identically cancels.
- This will improve with reduced inductor losses.

Supply noise spectrum

- Dominant tone in the output voltage is at 800 MHz at 100 MHz switching frequency.
- Limited spectral content in other harmonics indicated that current through inductors well balanced.

Ж А	gilent 00:2	21:54 De	ec 16, 20	11						
Ref 11	.21 mV		At	ten 10 dB					Mkr1	800.06 MHz 6.90 mV
Samp Lin	Marke 800.0 6.90	r 50000 1 mV	MHz-							
				1						
#l aAv										
100 W1 S2 S3 FC										
AA £ (f): FTun										
Ѕพр										
Center	1.023 39	GHz	alust - I., I.,			adadaad. 415		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Span	1.981 GHz

Voltage-mode feedback controller

- Large impedance of input PDN makes the load current response poor.
- However, we can confirm the load-line regulation capability of outer control loop for various gain settings for the error amplifier.

Toroidal inductor designs

- Laminated cores to reduce eddy current losses.
- Only one magnetic layer deposition necessary, simplifying fabrication
- Easy to couple inductors

Cross-sectional SEM image of laminated core: $2nm Ta/180nm Co_{91.5}Zr_{4.0}Ta_{4.5}/2nm SiO_2 \times 20$

Toroidal inductor designs

- Second lot of inductor prototypes are being tested
 - Greater than 10× higher "corner frequency" over yoke-based inductors
 - 65X increase in inductance; Inductance density of ~85nH/mm², expect this to double
 - DCR ~ 0.4 Ω caused by VIA contact resistance, expect this to fall by >4×
 - Q~4 @100MHz
 - Third lot in progress...

3D Chip Stacking

- Increased power density from custom fabricated power inductors
 - Inductors can be fabricated on a low-cost interposer and integrated with the IC via chip-stacking
 - Decap and power switches can be included on interposer design
 - Allows "one-way" current flow improving efficiency
 - Better transient performance due to lower impedance of input supply.
 - Step on the way to monolithic integration?

Monolithic integration

Monolithic Integrated Voltage Regulator may ultimately be the best solution.

Conclusions

- Paradigm shift occurring in how power needs to be distributed to high performance processors which will require new approaches to magnetics, converter design, and packaging.
- Have demonstrated significant progress toward 3D power distribution using a silicon interposer, including the first prototype. (ISSCC, 2012)
- Future work is focused on a full-chip stack and expanded integration in the interposer.

Funding Acknowledgements:

- DOE
- SRC through Focus Center Research Program
- DARPA through PERFECT and DAHI programs