Fully Integrated SC DC-DC: Bulk CMOS Oriented Design

Hans Meyvaert Prof. Michiel Steyaert

17 Nov 2012

Outline

- Towards monolithic integration
- CMOS as technology vehicle
- Techniques for CMOS DC-DC
- Conclusions

TOWARDS MONOLITHIC INTEGRATION

Driving aspects

CMOS AS TECHNOLOGY VEHICLE

Why CMOS?

- When there are other superior technologies such as GaN and GaAs
 - Superior parameters
 - But more expensive

- It depends on the specific requirements
- There is no single technology that can replace all others

Why CMOS?

 CMOS offers compact coexistence of power supply and load

Required for true granularisation

- Cost
- It's already available
- CMOS also offers parasitics ...

In this case it is not a matter of being the best in class, but to be (more than) sufficient by coping for parasitics and having the benefit of low cost.

TECHNIQUES FOR CMOS DC-DC

Bottom Plate Parasitic

- Concerns parasitic coupling of flying capacitor
 - 2 possible locations in a 2/1 step-down

Parasitic Capacitor

Typical bottom plate parasitic in CMOS

Flying Well

Reduces C_{par} from >5% to 1.3% in this case

- Concerns parasitic coupling of flying capacitor
 - 2 possible locations in a 2/1 step-down

An output perspective

Without Recycling

 $\Phi_{\mathbf{a}} \qquad C_{\text{par}} \xrightarrow{+} C_{\text{fly}} \quad \mathbf{V}_{\circ}$

itput perspective

With Recycling

 $\Phi_{\mathbf{a}} \qquad C_{\text{par}} \xrightarrow{+} C_{\text{fly}} \quad \mathbf{V}_{\circ}$

Intermezzo: $V_{o,id}$, V_o and γ

Voltage drop over R_{th} due to voltage divider formed by R_{th} and a R_L . This ratio equals γ .

An input perspective

Without Recycling

An input perspective

An input perspective

Without Recycling

$$E_{I,C_{par},ICR} =$$

$$C_{par}V_{o,id}^{2}(4-2\gamma)$$

The combined perspective

 \longrightarrow Trade-off: ΔE_{out} - ΔE_{in} ≥ 0

$$(-E_{O,Cpar,ICR} + E_{O,Cpar,REG}) - (E_{I,Cpar,ICR} - E_{I,Cpar,REG})$$

 $= \cdots$

$$=C_{par}V_{o,id}^{2}(5\gamma-4)$$

The trade-off is only function of γ !

- Any capacitor type
- \rightarrow Any V_i

The combined perspective

The combined perspective

Summary

$$\checkmark$$
 f_{sw} constant \rightarrow P_o \uparrow

✓
$$P_o$$
 constant \rightarrow $f_{sw} \downarrow$

Charge Recycling

- Other forms of charge recycling
 - Voltage domain recycling by serial voltage domains

System Architecture

Converter core

- Non overlap generation
- Level shifting
- Buffering
- 2 voltage domains
 - ground..V_o
 - $V_0..V_i$
- − 1 C_{fly}: P-moscap
- 4 switches

System Architecture

- On-chip 21 tap VCO
- 21 converter cores spread out of phase
- C_{fly,total}: 12 nF
- W_{switch,total}: 11.5 cm

Integrated linear regulator for start-up

Chip microphotograph + layout

Measurements

Closed loop

V_{in}: 2.4V

V_{out}: 1V

P_o range: 250-1050mW

Peak efficiency:

65% at 1W

Battery lifetime extension (EEF [3]):

+36%

Measurements

Open loop

- Maximum P_{out}: 1.65W
- Maximum η:69%

Measurements

Open loop load regulation

- -0.175 Ω

Comparison with state of the art

	[1]	[2]	[3]	[4]	This work
Tech node	32nm	45nm	130nm	32nm	90nm
Туре	capacitive	capacitive	inductive	capacitive	capacitive
Control	closed external	external f _{sw}	SCOOT	discrete step loop	closed external
Power density	0.86W/m m²	7.4W/mm ²	0.21W/mm ²	1.12W/mm ²	0.77W/mm ²
P _{out,max}	0.33W	8.88mW	0.8W	10.6mW	1.65W
η_{max}	85%	90%	58%	64%	69%
Tech option	SOI	SOI, deep trench caps	Bulk CMOS	Bulk CMOS, metal gate	Bulk CMOS
# interleaving	32	1	4	32	21

17-Nov-12 PowerSoC 2012

Comparison with state of the art

CONCLUSIONS

Conclusions

- Cheap and power dense integrated DC-DC converters facilitate on-chip power management
- The passives are the bottleneck!
 - ≈ 90% of die area
- Bulk CMOS is potential vehicle for PowerSoC
 - Flying Well
 - Intrinsic Charge Recycling
 - Multiphase Interleaving
 - Voltage Domain Stacking
- Application domain
 - High performance: solving I/O problem
 - Low performance: implementing energy saving techniques

Acknowledgement

NXP

- Henk Jan Bergveld
- Gerard Villar Pique
- Patrick Smeets
- Leo Warmerdam

Micas Colleages

- Dr. Tom Van Breussegem (ICsense.com)
- Dr. Mike Wens (MinDCet.com)
- Piet Callemeyn
- Aki Sarafianos

35

References

[1] H-P. Le, et al., "A 32nm Fully Integrated Reconfigurable Switched-Capacitor DC-DC converter Delivering 0.55W/mm2 at 81% Efficiency," ISSCC Dig. Tech. Papers, pp. 210-211, Feb., 2010

[2] L. Chang, et al., "A Fully-Integrated Switched-Capacitor 2:1 Voltage Converter with Regulation Capability and 90% Efficiency at 2.3A/mm2," IEEE Symp. VLSI Circuits, pp. 55-56, Jun., 2010

[3] M. Wens and M. Steyaert, "A Fully-Integrated CMOS 800mW 4-Phase Semi-Constant On/Off-time Step-Down Converter," IEEE Trans. Power Electronics, vol.26, no. 2, pp.326-333, Feb., 2011

[4] D. Somasekhar, et al., "Multi-Phase 1 GHz Voltage Doubler Charge Pump in 32 nm Logic Process," IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 751- 758, Apr., 2010

[5] M. D. Seeman and S. R. Sanders, "Analysis and Optimization of Switched-Capacitor DC-DC Converters," IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 841–851, 2008.

QUESTIONS?

Thank you!

