Metacapacitors: Printed high-frequency capacitors for electric power conversion

Eli S. Leland Power Supply on Chip 2012 November 17, 2012

Metacapacitors[™]: Next-generation power electronics for LED lighting and other applications data

What	Why	How	What for
Better DC-DC converters	 Cheaper 	 Switched capacitor circuit topologies 	 LED lighting drivers
	 Smaller 	 Novel high-frequency, low-loss capacitors 	 PV power conversion
	 More efficient 	 Scalable continuous printed fabrication 	 Mobile devices
	 Longer lasting 	 No transformers or electrolytics 	 Power supplies

Our multidisciplinary team combines enabling technology and expertise:

Analog power circuits and IC design

Sanders (Berkeley), Kinget (Columbia)

UNY ENERGY INSTITUT

Self-assembling nanoparticle dielectrics

O'Brien, Couzis

(CUNY)

Scalable capacitor printing technologies

Steingart, Leland (CUNY)

Flexible substrates and novel device integration

Kymissis (Columbia)

Switched-mode power supplies dominate, but have issues

- Lifetime limited by electrolytic capacitors
- Significant energy storage capacitance is required due to output waveform
- Efficiencies of 70-80% are common. Higher efficiencies are achievable, but at significantly higher cost
- Nonetheless, SMPS developments continue to be slow, evolutionary

Switched capacitor converters offer an attractive alternative

CUNY ENERGY INSTITU

- DC-DC power train is only switches and capacitors, no transformers or inductors
- Switches and capacitors only handle a fraction of the input voltage or total current
- Higher switching frequencies allow for higher power densities, efficiencies of 95% or greater
- Vision: A two-component power converter
 - Passives printed on cheap flex
 - Single IC for switching, control

Discrete component proof-of-concept

- Switched capacitor
 LED driver prototype
- 15.5 W, 425 mA,
 2.29 MHz switching frequency
- 92% efficient, achieving DOE goal for 2020
- Input/output isolation
- PWM dimming

How do we get to our vision?

Integrated circuit for switching and control

Powertrain capacitor network printed on flex

Chip-stacking switch capacitor DC-DC converter IC

CUNY ENERGY INSTITU

- Implemented with TI's ABCD5HV process, which can handle 120V maximum voltage on-chip
- Each chip only needs to stand 100V voltage on-chip, can handle higher input voltage by stacking more chips
- Flexible configuration. Can provide different conversion ratios for a given input voltage

DC output voltage To

LEDs

Discrete PFC off-line LED driver prototype

What about the capacitors?

- High-frequency
- Cheap!
 - Printable
 - Roll-to-roll process compatible
 - Low-temperature fabrication

Printable nanoparticle dielectric

- BaTiO₃ and (Ba, Sr)TiO₃ nanoparticles, single crystal, size controllable from 5-100 nm
- Low temperature (<100°C), scalable batch synthesis; no HTCC/LTCC processing
- Size, composition determined by solvents (alcohol, water) and metalorganic precursors

O'Brien, S., Huang, L. & Chen, Z. METAL OXIDE NANOCRYSTALS: PREPARATION AND USES. USA patent application 12/566,135 ¹⁰

High-frequency capability

- Single crystal particles exhibit no dielectric hysteresis, reducing dielectric switching losses
- Nanoparticle dielectric inks are compatible with printing processes
- Printing process must deliver consistent, functional dielectric films exploiting the low-loss behavior of the dielectric

Huang, *et al.*, "High K capacitors and OFET gate dielectrics from self-assembled BaTiO₃ and (Ba,Sr)TiO₃ nanocrystals in the superparalelctric limit," *Advanced Functional Materials*, 2010 11

Low temperature synthesis (< 100°C, no HTCC/LTay Cod R) search Projects Ag scaled to 200 mL - 1 L batches

Early prototypes: Spin-coated BST with parylene capping layer

- Spin-coated nanoparticles on glass with thermally-evaporated Au electrodes
- CVD Parylene-C layer to reduce high-frequency loss
- Capacitance flat to 10 MHz, dissipation factor < 0.05 at 1 MHz
- Not roll-to-roll compatible, difficult to scale vertically

Dielectric properties improve with printable polyfurfuryl alcohol (PFA) copolymer

- Much higher capacitance and dielectric loss at low frequency (< 1kHz) due to leakage current (carriers, defects, pinholes)
- Dramatic change in capacitance and dielectric

 loss with frequency due to different
 contributions from space charges or water
 molecules at various frequencies.

With in-situ polymerization, nanocrystal surface passivated, defects or pinholes reduced, fewer absorbents:

- stable and increased readings in capacitance;
- low and stable readings in dielectric loss;
- increase of k compared with that for pure BST: indicating that FA and PFA penetrate into voids.

Spray coating for scalability

CUNY ENERGY INSTITUTI

Spray coating process

- 1. Deposit evaporated aluminum electrode
- 2. Print dielectric layer
- 3. Heat treatment
- 4. Deposit next electrode layer
- 5. Repeat to build multilayer structure

Scaling outward

Mid 2011	Late 2011	Mid 2012
4 mm ²	450 mm ²	800 mm ²
2 nF (4 layers)	80 nF	180 nF

Scaling upward

Alternate electrode and dielectric layers, forming interleaved, multilayer capacitor structures

Spray-coated 6-layer capacitor

Wide-area dielectric films by spray printing

6-Layer capacitor performance

- Capacitance density = 0.75 nF/mm², k ~ 15
- Dissipation factor = 0.06 at 1 MHz
- Leakage current = 1 nA/mm² at 40 V

Increasing capacitance layer-by-layer

layers

Temperature stability

Setup for elevated temperature test

 Spay coated sample
 Spin coated sample

 Image: Coated sample
 Image: Coated sample

Temperature stability and age test of spin and spray coated Metacapacitor prototypes

Metrics	*Age test part I	*Age test part II	*Elevated temperature test (25 to 125 °C)
		(1000 11001 @123 0)	
Milestone	< 30 % ∆ in capacitance	< 30 % Δ in capacitance	_
Spin coated 1 mm ² capacitor	6 % Δ	< 1 % Δ	6.5 % Δ
Spray coated 4 mm ² capacitor	17 % Δ	< 1 % Δ	2.5 % Δ

- All capacitance are measured at 1 MHz

CUNY ENERGY INSTIT

- Age test part 1 and part 2 are continuous test with total of 1100 hours

* Compared to its initial capacitance value at 25C

Mechanical testing

- 2 cm radius bending test with no degradation in performance
- Tape test shows excellent adhesion

Integration to a power circuit

Metacapacitors in a 1 MHz LED driver regulator circuit

- Spray-coated caps on glass
- Spin-coated caps on flex

Contact: Eli Leland (esleland@che.ccny.cuny.edu)

Dr. Eli Leland

CCNY

SCUST

Dr. Limin Huang Prof. Seth Sanders Prof. Peter Kinget Prof. Ioannis Kymissis Chemistry Electrical engineering

Electrical engineering Columbia University

UC Berkeley

Electrical engineering Columbia University

Prof. Alex Couzis CCNY

Prof. Dan Steingart Chemical engineering Chemical engineering CCNY

Prof. Steve O'Brien Chemistry CCNY

Chemistry CCNY

UC Berkelev

Dr. Shuangyi Liu

Daniel Gerber

Barry Van Tassell Paul Chando Chemical Engineering Chemical engineering Chemical Engineering CCNY CCNY

Shyuan Yang **Electrical Engineering** Columbia University

Thanks!

backup

Moving forward

- Integrating spray-coating process on flexible substrates
- Testing custom power IC with printed capacitors
- Integrated LED driver prototype on flex!

Why capacitors instead of inductors?

Туре	Manufacturer	Capacitance, Voltage rating	Dimensions (mm)	Energy density (µJ/mm ³)
Ceramic Cap	Taiyo-Yuden	22µF @4V	1.6 x 0.8 x 0.8	172
Ceramic Cap	Taiyo-Yuden	1µF@35V	1.6 x 0.8 x 0.8	598
Tantalum Cap	Vishay	10µF@4V	1.0 x 0.5 x 0.6	267
Tantalum Cap	Vishay	100µF@6.3V	2.4 x 1.45 x 1.1	518
Electrolytic Cap	Kemet	22µF@16V	7.3 x 4.3 x 1.9	47
Electrolytic Cap	C.D.E	210mF@50V	76ф х 219	264
Shielded SMT Inductor	Coilcraft	10µH @ 0.21A	2.6 x 2.1 x 1.8	0.022
Shielded SMT Inductor	Coilcraft	100µH @ 0.1A	3.4 x 3.0 x 2.0	0.025
Shielded inductor	Coilcraft	170µH @ 1.0A	11 x 11 x 9.5	0.074
Shielded inductor	Murata	1 mH @ 2.4A	29.8ф х 21.8	0.189

Capacitors have >1000x higher energy density than inductors for power handling applications

Metacapacitors[™] High-level LED driver architecture

 Output regulation is accomplished using frequency modulation of switching converter

Update on materials synthesis

Scalable, low T "gel-rod" method for BST and novel Oxides

precursor gel

r. t. --55°C

gel rod

BST/ethanol 40 mg/ml

BST/furfural alcohol 50 mg/ml

The method is being used for all BST experiments, multilayers and for development of new oxides with potentially higher dielectric constant

1.0r 800.0p 0.8 E Dielectric loss 600.0p Capacitance 400.0p 200.0p 0.2 0.0 100 10k 100k 1M 10M 1k Frequency (Hz)

