

Integration of Power-Supply Capacitors with Ultrahigh Density on Silicon Using Particulate Electrodes

POWERSOC 2012

P M Raj, Himani Sharma, Kanika Sethi, Prof. Rao Tummala

3D Systems Packaging Research Center Georgia Institute of Technology, Atlanta, GA 30332-0560

Outline

- Component integration using 3D IPAC Concept
- 3D IPAC goals
- Applications
 - $_{\odot}$ VRM and decoupling
 - Thinfilm decoupling capacitors

\circ Power convertor

High-density capacitors

Passives Trend

What is 3D IPAC Concept and Why?

- 1. Ultra-thin Glass Core ~ 30 μ m
- 2. Low Loss
- 3. Fine-pitch and coarse-pitch through-package vias
- 4. Passive components on both sides of glass.
 - RF capacitors, inductors
 - Power supply capacitors and inductors
 - Decoupling Capacitors
 - Precision components
- 5. Active components for power, digital, RF and Analog
- 6. Interconnections
- 3D IPAC is a functional module

CENTER

3D IPAC on Interposer

3D IPAC in the 3D POP

3D IPAC on PWB

PWB

Goals of 3D IPAC

- Miniaturization:
 - 5X reduction in thickness
- Cost:
 - 2—5X reduction in cost
- Performance:
 - Higher bandwidth at lower power compared to today's systems
- Functionality:
 - Double-side component integration for heterogeneous functions in an ultrathin module

3D IPAC – Applications

State:

Glass

- Resistors
- Inductors

Decoupling capacitors

Power Convertor Module

- Power switches ٠
- High-density capacitor ٠
- High-density inductor •

3D IPAC – PDN Module

- Improved power integrity for 3D ICs and packages with thinner packages
- VRM and decoupling functions in the interposer, close to the package
- Reduces the number of decoupling capacitors
- Thin power ICs (ex. MOSFET switches)
- High-density inductors
- High-density capacitors

Sputtered BST Thinfilm Capacitors

Thinfilms (100-300 nm):

- Thinner films (Barium Strontium Titanate);
- Faster crystallization;
- Higher capacitance density of 14 nF/mm²

Key	y Result BST on Si/SiN/Ta/Ni	
BST sputtering	Ar/O ₂ (60% O ₂); 100 W; 2.5 hrs	
Annealing conditions	750 C, 30 min in N2	
Capacitance density	9 – 11 nF/mm2	
Higher yield with large area electrodes	220 nF achieved on 0.28 cm2	
Leakage current of the order	μ A/cm ² achieved up to 3 V (4 nF/mm ²)	
Yield	85% (30/35 devices yielded)	
Slide 10	2 nd GIT Workshop, November 14-16, 2012	

Solgel PZT – Thinfilm Capacitors

3D IPAC-Based PDN

- Three decoupling capacitor integration scenarios were modeled
 - SMD on board shows highest parasitics and lowest performance;
 - Requires excessive onchip decoupling
 - ThinFilm integration in today's packages can achieve higher frequency stability, but has limited manufacturability
 - IPAC micro-assembled close to IC shows best performance because of thin interposer and short bump parasitics;

5X improvement in frequency performance with the proposed 3D IPAC strategy

3D IPAC – Power Converter Module

Power Module:

- Switching regulator or charge-pump based
- Thin power ICs
- High-density inductors
- High-density capacitors

High-Density Capacitors

Porous Electrode with Highest Surface Area Efficiency

Silicon Trench vs. Copper Particulate Electrode

Silicon Compatible

100 X enhancement in area

Expensive silicon micromachining tools

Silicon Compatible

Potential for >2000 X enhancement in surface area from BET measurements (100 µm)

Low-cost paste processing

Area Enhancement:

Nanoelectrodes Vs Trenches

0.2 0.5 (NANOELECTRODE) 25 - 30 - 700 (TRENCH) 500 - 700 !! **AREA ENHANCEMENT AREA ENHANCEMENT** - 100

ASPECT RATIO (TENCH)

PRC's Background High-Density Capacitor Research

High surface area electrodes on silicon trench;

US 8,084,841 B2

High surface area electrodes on organic substrate with etched foil

High surface area electrodes on organic substrate with sintered particles

US 8,174,017

Nanoelectrodes on Si

Step 1:

- Copper powder
- Dispersant (Phosphate ester)
- Binder: Propylene carbonate
 Step 2:
- Printing on Silicon
 Step 3
- Sintering 400° C 600° C

- Copper particle size : 1-2 μm
- High surface area enhancement due to open pores
- 30-40X surface area enhancement for 25 µm film

Porous electrode with Sacrificial

•Using a sacrificial polymer (polypropylene carbonate) that would decompose easily at sintering temperatures in reducing atmosphere

ALD Conformality Studies

- Increase diffusion time of the ALD vapor
- For aspect ratio of 1000
 - 1 torr: 100 seconds
 - 0.2 torr: 500 seconds
 - Larger than ALD pumpdown time;
 - ALD time can start becoming larger;
- For aspect ratio of 10:
 - Micro to milli seconds;
 - Very small fraction of ALD pumpdown time;
 - no affect on ALD process time;

Based on modeling by: Gordon, Haussman and Kim (Harvard); Shephard (IBM)

Conformality Studies using EDS

EDS Scan at the bottom of 200 um thick electrode

Conformal Dielectric on Porous Electrodes

- 700 cycles of ALD alumina (~ 100 nm)
- FESEM showed 105 nm thick Alumina film on copper particle necks

Cross-section of sintered bottom electrode showing ALD alumina layer

Conformal Top Electrode

<u>Key Challenge</u>: To access the high surface area by using a conformal top electrode

<u>Approach</u> : Use of a liquid conducting polymer– polyethylene dioxythiophene (PEDT)

<u>Polymerization</u>: EDT+ oxidizer+ inhibitor – 1:25 (in-situ)

- Conductivity ~ 100 S/cm
- Fluid nature with low viscosity for easy infiltration of particulate electrode
- Low temperature processability (50° C)
- Self-healing characteristics

Demonstration of Nanoelectrode Capacitors

Device Thickness	Area	Capacitance
	Enhancement	Density
Planar (0.6mm x 0.6mm)		0.12µF/cm ²
<5 µm	10X	1.1 µF/cm ²
10 µm	25 X	3.9 µF/cm ²
25 µm	150-200X	30 µF/cm ²
>75 µm	400-500X	55-60 µF/cm ²

Nanoelectrode Capacitors : Leakage Current

GT PRC: HDCAP Vs State-of-the-Art

Permittivity X Electrode Area Enhancement

Slide 28

Conclusions

- 3D IPAC shown as a compelling new technology for active and passive component integration in ultrathin functional modules
 - Better miniaturization
 - Lower cost
 - Higher performance
- Novel silicon or glass-compatible high-density capacitor technologies investigated to meet 3D IPAC goals

