Microfabrication technologies for highly-laminated thick metallic cores and 3-D integrated windings

Florian Herrault

Georgia Institute of Technology Atlanta, GA

florian@gatech.edu http://mems.gatech.edu/msma PowerSoc 2012 Workshop

Acknowledgments

- Pr. Mark G. Allen (MSMA group Georgia Tech)
 - Dr. Preston Galle
 - Dr. Jungkwun Kim
 - Minsoo Kim
 - Jooncheol Kim
 - Richard Shafer
- David Anderson (Texas Instruments)
 - Jizheng Qiu
- Pr. David Perreault (MIT)
 - David Otten
- Sponsors: Arpa-E, Texas Instruments

Outline

- Metallic cores for high-frequency magnetics
- Highly-laminated magnetic metal cores
 - Concept
 - Fabrication and material selection
 - Core material characterization
 - Core loss measurements at High Fluxes and High Frequency
- Integrated Toroidal Inductors
 - Co-packaging of windings and cores
 - Microfabricated winding technology
 - Impedance measurements
- High-voltage Power Converter Experiments
- Conclusions

Metal Core Inductors

• Advantages of electroplated metallic alloys

- High saturation (High operating flux density → inductor miniaturization)
- Low coercivity (Low loss)
- Ability to electroplate in magnetic field to define easy/hard axis
- CMOS compatible
- Ability to electroplate thick cores (for large power handling)

BUT

• Operation in the 1-20 MHz region requires a few µm thick film lamination for conventional ferromagnetic metals (permalloy, CoNiFe, CoFe,...)

Our Approach and Goals – Magnetic Cores

• Technology-driven development of thick highly-laminated metallic alloys

- Demonstrate low eddy current losses in metallic alloys at MHz frequencies
- Operate these cores at very high fluxes and high frequencies
- Demonstrate high power handling

• Integrate cores and microfabricated windings

Previously-Reported Microfabricated Laminations

Micron-Scale Laminations via Robotically-Assisted Multilayer Plating

"Electroplating-based approaches for volumetric nanomanufacturing," Tech. Dig. Technologies for Future Micro-Nano Manufacturing, Aug. 2011.

Core Fabrication Technology

- A. Through-mold sequential electroplating of magnetic/sacrificial layers
- B. Mold removal, and partial etching of sacrificial material
- C. Formation of polymer supports
- D. Complete etching of sacrificial material
- E. Polymer infiltration (not shown) Georgia Institute of Technology

"Nanolaminated Permalloy Core for High-flux, High-frequency Ultracompact Power Conversion," TPES, in press.

Magnetic Material Selection

- Baseline material (Ni₈₀Fe₂₀)
- » Bs ~ 0.8 T
- » Hc ~ 0.7 Oe
- High saturation mat.(Fe₁₀Co₉₀)
- » Bs ~ 1.9 T
- » Hc ~ 1 Oe
- Low coercivity mat. (NiFeMo)
- » Bs ~ 1 T
- » Hc ~ 0.3 Oe

- Low coercivity and high saturation material (CoNiFe)
- » Bs ~1.8-2 T
- » Hc ~ 0.2-1 Oe

Highly-laminated Microfabricated Cores

40-layer **permalloy cores** with 1-µm-thick laminations

Cross-sectional view: Thick (2 μm) permalloy laminations with thin (300nm) copper interlayers

Cross-sectional view: **300-nm-thick permalloy laminations** with 300-nmtall interlayer gap **(300 layers)**

40-layer CoNiFe core

40-layer **CoNiFe laminations** with lamination thickness $\sim 1 \ \mu m$

300-layer CoNiFe laminations with lamination thickness $< 0.3 \mu m$

Wound Test Inductors

- Test Core Geometry
 - » OD:10mm, ID:6~8mm
- Packaged with test bobbins
 - » Characterization with high-power core loss measurement setup
- CoNiFe (1.8 T, < 1 Oe) vs. NiFe (0.8 T, 2 Oe)

Manifestation of Eddy Currents in Inductors

In-Situ Measurements of Sacrificial Metal Etching

- Inductors packaged and wound before copper core etch
- Constant-voltage measurements performed in DI water

Inductor inductance as a function of frequency parameterized by sacrificial layer etching time

GeorgiaInstitute of Technology

In-situ core loss suppression experiment

"Nanolaminated Permalloy Core for High-flux, High-frequency Ultracompact Power Conversion," TPES, in press.

High-Frequency Inductance Measurements

CoNiFe Cores – Bias Current Measurements

HFHF Characterization Setup

Inductor Core Loss Test Board with 35nF capacitor boards

GeorgiaInstitute of Technology

Capacitor boards for frequency-dependent measurements

HFHF Core Loss Measurements

Dissipated power in the inductor as a function of frequency and parameterized by AC peak flux density

"Nanolaminated Permalloy Core for High-flux, High-frequency Ultracompact Power Conversion," TPES, in press.

Georgia<mark>Institute_____</mark> of Technology

Analytical Separation of Eddy Current Losses

Post-Processed HFHF Core Loss Data

"Nanolaminated Permalloy Core for High-flux, High-frequency Ultracompact Power Conversion," TPES, in press.

Center for MEMS and Microsystems Technologies

GeorgiaInstitute of Technology

High Flux NiFe Core Loss Distribution

- Eddy and hysteresis losses extracted at 1 MHz as a function of flux
- At high fluxes, eddy losses have been suppressed and are negligible compared to hysteresis losses at 1 MHz

Core Lamination Performance Summary

Comparison of core loss at 1 MHz and high operating AC peak flux density GeorgiaInstitute of Technology Center for MEMS and Microsystems Technologies

Microfabricated Inductors with highly-laminated metallic cores

Hybrid integration process Independently-fabricated magnetic cores are integrated halfway through the winding fabrication process

"Integrated Toroidal Inductors with Nanolaminated Metallic Magnetic Cores," Tech. Dig. PowerMEMS 2012 workshop.

GeorgiaInstitute of Technology

Monolithic process Co-fabrication of the windings and the cores through sequential micro-fabrication steps of electroplating and polymer insulation 2 Pacativated Passivated OUP 1 CI laminated Laminated Top conductor core Bottom 100 µm 25 µm Insulation "Monolithically-fabricated laminated inductors with electrodeposited silver windings," Tech. Dig. MEMS 2013

Hybrid Integration Concept Overview

GeorgiaInstitute of Technology

Microfabricated Inductors

- 50-turn microfabricated inductors (non-optimized geometry)
- New generation of integrated cores with CoNiFe layers
- Microfabricated conductor heights ~ 0.5 mm

Partially-fabricated windings on a glass substrate

Batch of dropped-in cores

Fully-fabricated inductor

"Integrated Toroidal Inductors with Nanolaminated Metallic Magnetic Cores," Tech. Dig. PowerMEMS 2012 workshop.

Georgia<mark>Institute</mark> of Technology

Impedance Measurements of Microfabricated Inductors

- 50-turn microfabricated inductors with CoNiFe cores
- 100 layers 300 nm thick layers 14 3000 Air_core 12 2500 CoNiFe_1 Quality factor 10 CoNiFe_2 nductance (nH) 2000 8 1500 6 1000 CoNiFe_1 4 CoNiFe_2 500 2 0 0 100 Frequency (MHz) 100 10 Frequency (MHz) "Integrated Toroidal Inductors with Nanolaminated Metallic Magnetic Cores," Tech. Dig. PowerMEMS 2012 workshop. GeorgiaInstitute of Technology

Power Converter Measurements

Power converter circuit board and integrated inductor

Testing board with wirebonded inductor

ZVS buck converter

Georgialnstitutechnology overview of the PowerChip development program," TPES, in press.

100 V Power Converter Measurements

- 1.5 µH inductor with CoNiFe cores
- P_out ~ 25-35 W
- V_out = 35 V

Power converter efficiency as a function of input voltage

Georgia Institute of Technology Massachusetts Institute of Technology

Power converter switching as a function of input voltage

Summary

- Highly Laminated Metallic Cores: Technology-driven approach
 - Negligible eddy current losses
 - High Saturation flux densities
 - Low hysteresis losses
 - Electroplating-based technology compatible with thick magnetic core fabrication and CMOS manufacturing
- Microfabricated Inductors
 - Cores and windings are co-packaged
 - Demonstrated for large inductance inductors and small multi-phase topologies
- Demonstration in 100 V power converter
 - Operation at 2-6 MHz and 35W output power
- Ongoing work on material reliability (corrosion, stress, packaging) and in-field material electroplating
 GeorgiaInstitute
 Of Technology