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Outline

o Metallic cores for high-frequency magnetics
o Highly-laminated magnetic metal cores
Concept
Fabrication and material selection
Core material characterization
Core loss measurements at High Fluxes and High Frequency
o Integrated Toroidal Inductors
Co-packaging of windings and cores
Microfabricated winding technology
Impedance measurements
o High-voltage Power Converter Experiments

e Conclusions
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Metal Core Inductors

e Advantages of electroplated metallic alloys

e High saturation (High operating flux density = inductor
miniaturization)

e Low coercivity (Low loss)

e Ability to electroplate in magnetic field to define easy/hard axis
e CMOS compatible

e Ability to electroplate thick cores (for large power handling)

e BUT

e Operation in the 1-20 MHz region requires a few pm thick film
lamination for conventional ferromagnetic metals (permalloy,
CoNiFe, CoFe,...)
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Our Approach and Goals — Magnetic Cores

e Technology-driven development of thick highly-laminated metallic

alloys

e Demonstrate low eddy current losses in metallic alloys at MHz

frequencies
e Operate these cores at very high fluxes and high frequencies

e Demonstrate high power handling

e Integrate cores and microfabricated windings
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Previously-Reported Microfabricated Laminations

/ — \/ L \ / S \

Electrodeposition of Electrodeposition of Sputter deposition of

magnetic material magnetic material Magnetic material

m  Multiple deposition ®m  One deposition of seed | |m  Alternate sputtering of
steps of seed layer layer magnetic materials and

m  Multiple m High-aspect-ratio insulation layers
photolithography for plating mold is required | |m  Single vacuum step
plating molds and for large cross-sectional | |g  Process time
insulators core

o m  Some patterning
m  Overall core fabrication complexity

time is proportional to
the number of layers

- AN AN /

Magne_tlc Insulat_lon
ﬁ Georgialisiiute material material
ofTechnology Center for MEMS and Microsystems Technologies

= 6



Micron-Scale Laminations via
Robotically-Assisted Multilayer Plating

motor leads

Multilayer plating . .
K through mold Selective etching /

“Electroplating-based approaches for volumetric nanomanufacturing,”

Georgiaﬂ@&%ﬁﬁﬁ@]ﬁ@ Tech. Dig. Technologies for Future Micro-Nano Manufacturing, Aug. 2011.
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Core Fabrication Technology

Magnetic material
Copper
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A. Through-mold sequential electroplating of magnetic/sacrificial layers
B. Mold removal, and partial etching of sacrificial material

C. Formation of polymer supports

D. Complete etching of sacrificial material

. Polymer infiltration (nOt ShOWIl) "Nanolaminated Permalloy Core for High-flux, High-frequency
Georgia Institutae Ultracompact Power Conversion,” TPES, in press.
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Magnetic Material Selection

e Baseline material (Nig,Fe,,)

» Bs~08T — 2
» Hc~0.7Oe :>~ <M<‘)T
. . 2 1.5 ¢ NiFe
e High saturation mat.(Fe,,Coyy) | S " mFeCo
» Bs~19T ERES __—]_,__4 NiFeMo
» Hc~10e é 05 - CoNiFe
e Low coercivity mat. (NiFeMo) | £ 0
» Bs~1T 0 0.5 1 1.5
» Hc~0.30e Coercivity (Oe)

e Low coercivity and high saturation material (CoNiFe)
» Bs~1.8-2T
» Hc~0.2-10e

l! Georgialnstitute
V] ofTechnology 9 Center for MEMS and Microsystems Technologies




20.0kV 8.9mm x750 BSE3D

40-layer permalloy cores

Cross-sectional view: Thick (2 um) Cross-sectional view. 300-nm-thick
with 1-um-thick laminations  permalloy laminations with thin

permalloy laminations with 300-nm-
(300nm) copper interlayers tall interlayer gap (300 layers)

15.0kV 29.2mm x450 SE

40-layer CoNiFe core

—_

40-layer CoNiFe laminations with

300-layer CoNiFe laminations with
lamination thickness ~ I um lamination thickness < 0.3 um
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of Technology
ie 10

Center for MEMS and Microsystems Technologies



Wound Test Inductors

e Test Core Geometry

» OD:10mm, ID:6~8mm
e Packaged with test bobbins

» Characterization with high-power core loss measurement setup
e CoNiFe (1.8 T, <1 Oe) vs. NiFe (0.8 T, 2 Oe)

ound inductors with inductances
> | uH using 7-strand litz wire

11 Center for



Manifestation of Eddy Currents in Inductors

Suppressed eddy currents in metal cores manifested
by constant inductance as a function of frequency

Inductance No eddy
T / current
-
Depends on skin depth & id
lamination thickness Eddy CUI:rentS are
— dominant
ﬁ Frequency
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In-Situ Measurements of Sacrificial Metal Etching

e Inductors packaged and wound before copper core etch
e Constant-voltage measurements performed in DI water

1.E-06
1.E-06 e E
_ * 85% Inductor under
T 1E06 | 55% test
O * 35%
c 907 « 20% \
8 5o o
- 4 5%
2 7.E-07 T m2% :
- . 0% DI Rinse
6.8-07 Sacrificial Z analyzer |
layer etchi
5.E-07 “ime (%) | connector
1.00E+05 1.00E+06 1.00E+07
Frequency (MHz) In-situ core loss suppression experiment

Inductor inductance as a function of frequency
parameterized by sacrificial layer etching time

"Nanolaminated Permalloy Core for High-flux, High-frequency
Georgia Institutae Ultracompact Power Conversion,” TPES, in press.
ofTechnology Center for MEMS and Microsystems Technologies
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High-Frequency Inductance Measurements
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CoNiFe Cores — Bias Current Measurements
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18 turn CoNiFe inductor
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HFHF Characterization Setup

1
motherboard ! L

RF Amplifier Scope D Tr—

‘connectors generator -
(Vin)
nductor ——
I : _:‘:_ _:‘EI high-power

RF amplifier 1 coax cable
C
interchangeable
daughterboard
Inductor Core Loss Test Board with 35nF
capacitor boards

Georgiaﬂ@@ﬁﬁﬁ@]ﬁ@ Capacitor boards for frequency-dependent measurements
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HFHF Core Loss Measurements

1400
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1200
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<~ 1000
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Dissipated power in the inductor as a function of
frequency and parameterized by AC peak flux density

"Nanolaminated Permalloy Core for High-flux, High-frequency
Georgiaﬂ@g%ﬁﬁﬁw&@ Ultracompact Power Conversion,” TPES, in press.
ofTechnology Center for MEMS and Microsystems Technologies
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Analytical Separation of Eddy Current Losses

e

e Eddy current losses exhibit A2 dependency Puot = Keaay™ A2+ Knyst™ f
e Hysteresis losses exhibit f dependency-> Prot = Peday+ Physt

Ptot / f Ptot / f PV tot/
o (01 Pt

‘ Pot/ f = keddy*f -I-khyst ‘

Large eddy
current losses

‘ slope = keaa ‘

H Intercept = k. ‘
pL= No eddy currents
(keddy — 0)
> >
Freauency Frequency
Analytlcal Extraction of Core Losses Interpretation

M or lecninolegly Center for MEMS and Microsystems Technologies
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Post-Processed HFHF Core Loss Data

—
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High Flux NiFe Core Loss Distribution

e Eddy and hysteresis losses extracted at 1 MHz as a function of flux

e At high fluxes, eddy losses have been suppressed and are negligible compared to
hysteresis losses at 1 MHz
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"Nanolaminated Permalloy Core for High-flux, High-frequency
Georgialnstitute Ultracompact Power Conversion,” TPES, in press.
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Core Lamination Performance
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Comparison of core loss at 1 MHz and high operating AC peak flux density
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Microfabricated Inductors
with highly-laminated metallic cores

Hybrid integration process Monolithic process
ndependently-fabricated magnetic o-fabrication of the windings and the c%
cores are integrated halfway through through sequential micro-fabrication
the winding fabrication process steps of electroplating and polymer

insulation

Laminated
core

“Integrated Toroidal Inductors with Nanolaminated Metallic : 100 i Insulaygn L
Magnetic Cores,” Tech. Dig. PowerMEMS 2012 workshop. “Monolithically-fabricated laminated inductors with
ectrodeposited silver windings,” Tech. Dig. MEMS 201

Georgialnstitute
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Hybrid Integration Concept Overview

Copper
coating

SU-8
core:

Key winding
fabrication concept

“Microfabrication of air-core toroidal inductor with
very high aspect ratio metal-encapsulated polymer
: NMiS=2012 workshop

Independent fabrication
of cores and windings

Drop-in pre-insulated
core
* High-aspect-ratio copper-coated polymer vertical vias

e )

* Insulated cores dropped into the winding frame

Top winding fabricated core integration Microfabrication of
top copper windings
Georgialnstitute
@ﬁTeChm@ﬂ..y Center for MEMS and Microsystems Technologies
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Microfabricated Inductors

e 50-turn microfabricated inductors (non-optimized geometry)
e New generation of integrated cores with CoNiFe layers
e Microfabricated conductor heights ~ 0.5 mm

llllllll

ML

—

.

\\\\\

Partially-fabricated windings Batch of dropped-in

Fully-fabricated inductor
on a glass substrate cores
“Integrated Toroidal Inductors with Nanolaminated Metallic
Georgialnstitute Magnetic Cores,” Tech. Dig. PowerMEMS 2012 workshop.
of Technology Center for MEMS and Microsystems Technologies
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Impedance Measurements of
Microfabricated Inductors

® 50-turn microfabricated inductors with CoNiFe cores

e 100 layers — 300 nm thick layel:rs
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!Georg|a|][m§ﬁuﬁ@jﬁ@ Magnetic Cores Tech. Dig. PowerMEMS 2012 workshop
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Power Converter Measurements

Power converter circuit board and integrated inductor

+ Vigp -
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GeorgialnstituAdschnology overview of the PowerChip development program,” TPES, in press.
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100 V Power Converter Measurements
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Summary

e Highly Laminated Metallic Cores: Technology-driven approach
e Negligible eddy current losses
e High Saturation flux densities
e Low hysteresis losses
o

Electroplating-based technology compatible with thick magnetic core
fabrication and CMOS manufacturing

e Microfabricated Inductors
e Cores and windings are co-packaged

e Demonstrated for large inductance inductors and small multi-phase
topologies

e Demonstration in 100 V power converter
e CQOperation at 2-6 MHz and 35W output power

e Ongoing work on material reliability (corrosion, stress, packaging)

Georgialnstitute
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