

Magnetics Integration - from Thin Film Heads to On-Chip Inductors

Naigang Wang, IBM T. J. Watson Research Center

nwang@us.ibm.com

PowerSoC2012

Team

1.111-0-

IBM T. J. Watson Research Center Eugene O'Sullivan; Lubomyr Romankiw; Bucknell Webb; William Gallagher

- IBM Almaden Research Center Philipp Herget; Robert Fontana;
- Columbia University Noah Sturcken; Kenneth Shepard

Acknowledgement

DOE support under contract DE-EE0002892

Microelectronics Research Laboratory at IBM T. J. Watson Research Center

Outline

IBM

- Review of the integration of thin film recording head
- Fabrication of on-chip inductors using "old" technologies.
- Magnetic materials properties
- Inductor performance

11111

□ Summary

Individual manual made → mass manufacture

In 1979, IBM introduced batch fabricated heads which was the first major paradigm shift in the commercial fabrication of inductive heads and resulted in an order of magnitude increase of bit density, faster data access, and smaller, less expensive systems.

Similar Structure and Dimension!

Compare the requirements

Head

- High moment
- Low inductance

Inductor

- Relatively high inductance
 - 1-100 nH (>50 MHz)
- Low DC loss: << 1 Ω
- Low AC loss
- High Q: 8-30

Magnetics

- Thickness: 0.5-5 um
- High μ:>500
- High moment
- High ρ
- Low H_c

6

Mass Manufacturability

- Compatibility: temp., corrosion...
- Stress, adhesion and wafer bowing
- Alignment/overlay and patterning
- Low cost

Major integration technologies for thin film heads

Plating through masks

Electroplating

- Low cost
- High deposition rate
- Conformal coverage
- **D** Patterning yokes with smooth edges

Frame plating magnetic yokes

Etch field and remove PR

Frame plating

- Precise control of thickness and composition
- Easy application of an in-plane magnetic field across the narrow pole tip

Electroplating tools for large scale wafers

Paddle cell

Efficient agitation

- Particularly important for Fe containing alloys
- Auxiliary electrode ensure the thickness and composition uniformity across the whole wafer

S. Mehdizadeh, J. Electrochem. Soc., vol. 137,1990

Hard baked photoresist

- Novolac resin based photoresist
- Reflow at around 120 C and hard baked at 200-250 C
- Chemically inert and mechanically strong
- Provide partially planarization for top yoke deposition
- Provide smooth surface and edge

Huge knowledge base!

- Magnetic materials
- Magnetic domain control
- □ High frequency magnetic switching dynamics
- Magnetic and eddy current loss

• …

On-chip inductor fabrication

- Fabrication processes on 200 mm silicon wafers
- Structure: Elongated sandwiched spiral
- □ Yoke materials: Ni₄₅Fe₅₅
- Fabrication: Inductive thin film head processing

Testsite: Process integration development

1111-0

PowerSoC2012, San Francisco

Nov 17, 2012

			1
-	-		_
	-	a land as	
-	Parent of the	BC	

Fabrication process

1111-1

Damascene Cu interconnector

Frame plating bottom yoke

Remove field & dielectric encapsulation

Electroplating Cu coils through masks

PR encap, reflowed & hardbaked

Frame plating top yoke

PowerSoC2012, San Francisco

Nov 17, 2012

Plating has much better conformal coverage!

Æ

14

PowerSoC2012, San Francisco

				Ī
Ma	teria	als properties	Property	45/55
	1500r		B _s (T)	1.5 T
u/cc)	1000		H _k (Oe)	13
tion (em	500 0		H _c (Oe)	0.2 (Easy) 0.2 (Hard)
etizat	-500	. /	μ _r	~1000
Magn	-1000 -1500		Resistivity (μΩ·cm)	45
	1000	-50 Applied Field (Oe) 50	Density (kg/m3)	~8.3×10 ³
	Sam	ple dimension: 1 cm × 1cm × 1 µm	Stress as plated (MPa)	130 (1 um) 110 (2.5 um) 100 (3 um)

 	-		
	-	-	-
a second			

Magnetic domain pattern

Easy axis

- Domain structures were obtained by Bitter Pattern Technique
- □ Ferrofluid was provided by Ferro Tech (EMG508)

DC resistance is $0.16 \pm 0.06 \Omega$

Inductor performance – Yoke thickness

IBM

Inductance enhanced by 4× and 6×

18

Inductance proportional to the yoke thickness

Inductor performance – # of turns

Inductance reaches up to 125 nH.

Self-resonant frequency decreases due to the increased capacitance.

-	1		
-			
	-	_	

Saturation and coupling

:::-

Chip stack – initial results

-		-		_
	_	-	_	_
				-
	-	_	_	_

□ Peak efficiency of ~74% at

75MHz.

- Inductors are the primary
 - source of loss.
- High resistive material and/or

lamination.

21

Loss Breakdown

Dr. Shepard's presentation on Saturday

PowerSoC2012, San Francisco

Summary

1111-1

- We have developed processes for batch fabrication of magnetic inductors using thin film head integration technologies.
- The inductors show enhanced inductance, but low Q due to eddy current loss.
- High frequency losses can be reduced by using laminated yokes and/or new magnetic materials.