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Use of Magnetics in our Everyday Lifes
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And in Electronics...

]I BACKGROUND | THEORY | MATERIALS | LAYOUT | MEASUREMENTS | RESULTS | CONCLUSION |

Voltage regulator module (VRM) IMEC 5 GHz low noise amplifier

4 Wang Group 11/24/2012



Transformers
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o Transformer: a device that transfers electrical energy from one circuit to another
through inductively coupled electrical conductors.
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o A transformer is used for:

o Voltage gain/reduction using turn ratios between the primary and secondary
windings (V,/V, = N,/N,=L,/I,)

o Impedance matching through turn ratios (R,/R, = (N,/N,)?)

o Ground isolation, can be performed using a 1:1 transformer, or with various turn
ratios for a voltage change.
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Transformers vs. Inductors
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o Mutual inductance Is

M =k./LL,

o For 1:1 turn ratio transformers

M =KL, if L, =L,

o Large primary and secondary inductances (per
area) beget large mutual inductances (per
area)!
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Inductance & Frequency Tradeoff
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Discrete inductors

10uH 71 N © Large inductance
® Large volume
® Poor AC performance
1uH -
m
O jﬁ
C 100nH -
©
o
S Planar spiral inductors
2 10nH A © Small area consumption
— ® Small inductance
1 nH ® Limited performance in
: sub-GHz applications
100 pH A

100kHz 1MHz 10MHz 100MHz 1GHz 10GHz
Frequency

From A. Ghahary, “Fully integrated DC-DC converters,” Power Electronics Technology, Aug. 2004
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Solenoid Inductance
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o Inductance of air core (AC) inductor: Lwinding ,
Lac = I—Winding + Lparasitic

o Inductance of magnetic inductor: L, =L,c +AL

2 2
- Solenoid inductor: A — Mot N Wty HoMeff N "Wy ty
IM[1+Nd(“r _1)] I|\/|

1+ N4 (u, —1) Due to the demagnetization effect

o Inductance enhancement:

AL _ Lwe ~bac R g _Awvc . Gain much less than g but still significant
Lac Lac Anc eff
AI\/IC AAC,eff

Ref.: D.W. Lee, K.-P. Hwang, S.X. Wang, IEEE Trans. Mag., 44, 4089-95, 2008.
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Effective Permeability
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Quality Factor Q & Fundamental Tradeoff
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: : : Qe = LAC
o Quality factor of air core inductor: AC = R
AC
o Quality factor of magnetic inductor: Q,,. = Lmc - Lac +AL
R [ ]
— If AL is very small, Q,,c becomes close MC Rac +© H—l AL
to Qpc = oLac/Rac- If AL is very large 10-
compared to L,., Q,c approaches the _%LAC:]'
1 — AL, =10

permeability ratio 1 ’/u” of the magnetic
core.

— Qyc IS higher than Q,: below the
frequency f,,c at which Q.. and ¢ '/u”
cross each other, and Q,,c becomes
less than Q,- beyond this cross-over
frequency. Hence f,,c can be considered
as the useful bandwidth of the magnetic
inductor.

Quality factor

— Larger Q values are obtained at lower 10° T ""1'07 T 168f — ...109
MC

frequencies for a given magnetic core.
Frequency (Hz)

Ref.: D.W. Lee, K.-P. Hwang, S.X. Wang, IEEE Intl. Magnetics Conf., 2008
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Directions for Magnetic Inductors/Transformers
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o) — Large AL, large p'/u
1—— Small AL, small u"/u
2071 —— Large AL, small u'/u

Quality factor
H
o

10° 10 10° 10°
Frequency (Hz)

The reported device properties tend to have either large AL with large

' or small AL with small /4. The case of large AL with small #"/4/
would be desirable to increase the quality factor and the useful bandwidth

of the magnetic inductors and transformers.
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Materials- Loss Mechanisms
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o Hysteresis loss:

o The area inside the B-H loop is the energy B
lost per unit volume per cycle

o Power loss = Frequency x Loop area

o Eddy current loss:

o The change in the flux density causes the
eddy current such that it opposes the

initial flux changes
o Classical eddy current loss:

2p2 A2
I:)eddycurrent . w Bmd T /
vol 48,0 d
o Ferromagnetic resonance loss: ——d— N

o Imaginary permeability significantly
increases as the operation frequency
approaches the FMR frequency.
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Materials- Theory of Laminations
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Fabricated Laminated Film
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o Properties measured on sample fabricated on the wafer
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Kerr Domain Images
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Easy Axis

Hard Axis

Kerr Image — Easy Axis Excitation

Wang Group

Kerr Image — Hard Axis Excitation

For operation, field is applied
along the hard axis

Domain patterns are not
affected by the underlying
coil patterning
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Device Design
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o Solenoid-style transformer
o Interleaved coils, 2 series
o 4/8/16 turns per series

o Cu colls
o 40 um wide, 3 um thick
o Nig,Fe,q Core
s [NiFe(350nm)/A|N(7nm)]8
o 2.8/5.6 um thick

o 150/300/500 um wide 16 Turn Tré}nsformer
500 um wide core

o Vias
o 7 um total thickness 2 um insulator
Magnetic core
o 2 um below core, 2 um above 2 um insulator
o 30umdiameter = 0000 B -

0.6 um insulator

Si
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Measurement Methods
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o 2-Port Measurement

o Measure primary with
secondary open

o Measure primary with
secondary short

o Remove pad parasitics
using open-short de-
embedding structures

For L,=L,, and Q >> 1:
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Coupling Coefficient- Correction
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0 Measured device has 300 um wide x 5.6 um thick
core, with 32 turns (16 turns per solenoid)

o k=0.97 at 20 MHz (peak Q without the correction)

l _
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Device Properties vs. N
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o All devices have: 500 um wide x 5.6 um thick core, two coils in series
o Coupling coefficient is measured at Q. Without correction

o 32-turn transformer has inductance enhancement by 60x over
air-core, and a nearly perfect coupling coefficient at 0.97

o Air core device had negligible coupling across frequency
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Device Properties vs. Film Thickness
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o All devices have: 500 um wide core with 16 turns, two coils in series (8
turns per solenoid)

o Thicker core leads to more enhancement in inductance. Inductance
enhancement in 16-turn transformer (>~20x) is more limited by the
demagnetization field than that in 32-turn transformer (>~60x).
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Device Properties vs. Coil Thickness
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Conclusion
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o High-performance integrated magnetic transformers were
successfully designed and fabricated:

o Inductance enhancement of 60x over the air core equivalent, the
inductance density reached 178 nH/mm?, and a peak quality factor of 6.3.

o Compact thin film transformers with coupling efficiency >0.97

o Analytical and numerical models can accurately describe the
actual device properties:

o The fundamental trade-offs (AL vs AR) of the integrated magnetic

inductors and transformers can be well understood and utilized for
optimal design.

o Magnetic materials selection and characterization by

permeameter and Kerr microscope are important for device design
and experimental trouble shooting.
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Magnetic Inductors/Transformers for Power Conversion
F-abricated by Stanford Collaboration

. D. W. Lee, et al.
A.M. Crawford, et al. IEEE Trans. Mag., 44, 4089-95, 2008

IEEE Trans. Magn.
2002, p.3168-70

Planar solenoid inductor with
CoTaZr core,

Inductance enhancement over
air core = 34x
Q>6 @ 26 MHz

Planar spiral inductor
with CoTaZr core,
CMOS compatibility,
Q—27@1GHz

L. Li, D. W. Lee, et al.

IEEE Trans. Advanced Packaging,
32(4), 780-787, 2009
On-package solenoid
inductor with CoFeHfO core,

Q=22 @ 200—300 MHz,
Rge. — 10 mQ Magnetic transformers

with laminated NiFe/ZAIN
cores
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