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Use of Magnetics in our Everyday Lifes 
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Texas Instruments Tag-itTM 

• Traffic lights 
• Red-light cameras 

• Metal detectors 

• Transformers 
• RFID tags 
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And in Electronics… 
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IMEC 5 GHz low noise amplifier Voltage regulator module (VRM) 



Transformers 
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 A transformer is used for: 
 Voltage gain/reduction using turn ratios between the primary and secondary 

windings (V1/V2 = N1/N2=I2/I1) 
 Impedance matching through turn ratios (R1/R2 = (N1/N2)2) 
 Ground isolation, can be performed using a 1:1 transformer, or with various turn 

ratios for a voltage change. 
 

Integrated Solenoid 

 Transformer: a device that transfers electrical energy from one circuit to another 
through inductively coupled electrical conductors. 
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Transformers vs. Inductors 

 Mutual inductance is 
 
 

 For 1:1 turn ratio transformers 
 
 

 Large primary and secondary inductances (per 
area) beget large mutual inductances (per 
area)!   
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Inductance & Frequency Tradeoff 
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From A. Ghahary, “Fully integrated DC-DC converters,” Power Electronics Technology, Aug. 2004 
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Discrete inductors 
 Large inductance 
 Large volume 
 Poor AC performance 

Planar spiral inductors 
 Small area consumption 
 Small inductance 
 Limited performance in 
    sub-GHz applications 

http://www.emeraldinsight.com/fig/2180200104013.png�


Solenoid Inductance 
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  Inductance of air core (AC) inductor: 

  Inductance of magnetic inductor: 

LWinding 

∆L 

- Solenoid inductor: 

  Inductance enhancement: 

AMC AAC,eff 

Gain much less than µr,  but still significant. 

Ref.: D.W. Lee, K.-P. Hwang, S.X. Wang, IEEE Trans.  Mag., 44, 4089-95, 2008. 

Due to the demagnetization effect 



Effective Permeability  
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•  lM >> (wMtM)1/2 is preferred to maintain a high effective 
permeability, and greater inductance enhancement. 

•  The demagnetization effect is more severe for a higher µr. 
 

µr = 1000 wM/tM = 64 
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Quality Factor Q & Fundamental Tradeoff 
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→ If ΔL is very small, QMC becomes close 
   to QAC = ωLAC/RAC. If ΔL is very large 
   compared to LAC, QMC approaches the 
   permeability ratio µ’/µ” of the magnetic 
   core. 
 
→ QMC is higher than QAC below the 
   frequency fMC at which QAC and µ’/µ” 
   cross each other, and QMC becomes 
   less than QAC beyond this cross-over 
   frequency. Hence fMC can be considered 
   as the useful bandwidth of the magnetic 
   inductor. 
 
→ Larger Q values are obtained at lower  
    frequencies for a given magnetic core.  
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Ref.: D.W. Lee, K.-P. Hwang, S.X. Wang, IEEE Intl. Magnetics Conf., 2008 



Directions for Magnetic Inductors/Transformers 
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•  The reported device properties tend to have either large ∆L with large 
µ”/µ’ or  small ∆L with small µ”/µ’. The case of large ∆L with small µ”/µ’ 
would be desirable to increase the quality factor and the useful bandwidth 
of the magnetic inductors and transformers. 
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Materials- Loss Mechanisms 
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  Hysteresis loss: 
 The area inside the B-H loop is the energy 

lost per unit volume per cycle 
 Power loss = Frequency x Loop area 
 

 Eddy current loss: 
 The change in the flux density causes the 

eddy current such that it opposes the 
    initial flux changes 
 Classical eddy current loss: 
 
 
 

  Ferromagnetic resonance loss: 
 Imaginary permeability significantly 
    increases as the operation frequency   
    approaches the FMR frequency. 
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Materials- Theory of Laminations 
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Fitting Equations: 

Ref: E. V. D. Riet and F. Roozeboom J. Appl. Phys., vol. 81, Jan. 1997.  

thickness 



Fabricated Laminated Film 
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 Properties measured on sample fabricated on the wafer 
| BACKGROUND | THEORY | MATERIALS | LAYOUT | MEASUREMENTS | RESULTS | CONCLUSION | 
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Kerr Domain Images  
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 For operation, field is applied 
along the hard axis 

 Domain patterns are not 
affected by the underlying 
coil patterning 

| BACKGROUND | THEORY | MATERIALS | LAYOUT | MEASUREMENTS | RESULTS | CONCLUSION | 

Easy Axis 

Hard Axis 

Background Image 

Kerr Image – Easy Axis Excitation 
100um 

Kerr Image – Hard Axis Excitation 



Device Design 
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 Solenoid-style transformer 
 Interleaved coils, 2 series 
 4/8/16 turns per series  

 Cu coils 
 40 um wide, 3 um thick 

 Ni81Fe19 Core 
  [NiFe(350nm)/AlN(7nm)]8 

 2.8/5.6 um thick 
 150/300/500 um wide 

 Vias 
 7 um total thickness 
 2 um below core, 2 um above 
 30 um diameter 
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16 Turn Transformer 
500 um wide core 

Si 

3 µm Cu 

3 µm Cu 

Magnetic core 

0.6 µm insulator 

2 µm insulator 

2 µm insulator 



Measurement Methods 
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 2-Port Measurement 
 Measure primary with 

secondary open 
 Measure primary with 

secondary short  
 Remove pad parasitics 

using open-short de-
embedding structures 

| BACKGROUND | THEORY | MATERIALS | LAYOUT | MEASUREMENTS | RESULTS | CONCLUSION | 
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Coupling Coefficient- Correction 
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 Measured device has 300 um wide x 5.6 um thick 
core, with 32 turns (16 turns per solenoid) 

 k = 0.97 at 20 MHz (peak Q without the correction) 
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Device Properties vs. N 
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 All devices have: 500 um wide x 5.6 um thick core, two coils in series 

 Coupling coefficient is measured at Qpeak without correction 
 32-turn transformer has inductance enhancement by 60x over 

air-core, and a nearly perfect coupling coefficient at 0.97 
 Air core device had negligible coupling across frequency  

| BACKGROUND | THEORY | MATERIALS | LAYOUT | MEASUREMENTS | RESULTS | CONCLUSION | 
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Device Properties vs. Film Thickness 

11/24/2012 Wang Group 20 

 All devices have: 500 um wide core with 16 turns, two coils in series (8 
turns per solenoid) 

 Thicker core leads to more enhancement in inductance. Inductance 
enhancement in 16-turn transformer (>~20x) is more limited by the 
demagnetization field than that in 32-turn transformer (>~60x).   

| BACKGROUND | THEORY | MATERIALS | LAYOUT | MEASUREMENTS | RESULTS | CONCLUSION | 
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Device Properties vs. Coil Thickness 
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 Thicker coils do not change 
inductances, but can 
increases the quality factor for 
slightly lower frequencies 

 High frequency quality factor is 
determined by magnetic core 
losses and the AC losses in Cu 
coils: 
 
 
 
 

 Quality factor is also limited 
by the LC resonance. 
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Conclusion 
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  High-performance integrated magnetic transformers  were 
successfully designed and fabricated: 
 Inductance enhancement of 60× over the air core equivalent, the 

inductance density reached 178 nH/mm2, and a peak quality factor of 6.3. 
 Compact thin film transformers with coupling efficiency >0.97  

 
 Analytical and numerical models can accurately describe the 

actual device properties: 
 The fundamental trade-offs (∆L vs ∆R) of the integrated magnetic  
 inductors  and transformers can be well understood and utilized for 

optimal design. 
 Magnetic materials selection and characterization by    

permeameter and  Kerr microscope are important for device design 
and experimental trouble shooting. 

| BACKGROUND | THEORY | MATERIALS | LAYOUT | MEASUREMENTS | RESULTS | CONCLUSION | 
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Magnetic Inductors/Transformers for Power Conversion 
Fabricated by Stanford Collaboration 

IEEE Trans. Magn. 
2002, p.3168-70  

A.M. Crawford, et al.  

Planar spiral inductor 
with CoTaZr core, 
CMOS compatibility, 
Q ~ 2.7 @ 1 GHz 

On-package solenoid 
inductor with CoFeHfO core, 
Q = 22 @ 200~300 MHz, 
Rdc ~ 10 mΩ 

IEEE Trans. Advanced Packaging, 
32(4), 780-787, 2009 

L. Li, D. W. Lee, et al.  

Planar solenoid inductor with 
CoTaZr core, 
Inductance enhancement over 
air core = 34x  
Q>6 @ 26 MHz 

IEEE Trans.  Mag., 44, 4089-95, 2008 
D. W. Lee, et al.  

 Figure 1. Fabricated magnetic 
transformer with interleaved coils 
(J. Mullenix, S.X. Wang et al.) 

Magnetic transformers 
with laminated NiFe/AlN 
cores 
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