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Use of Magnetics in our Everyday Lifes 

11/24/2012 Wang Group 3 

Texas Instruments Tag-itTM 

• Traffic lights 
• Red-light cameras 

• Metal detectors 

• Transformers 
• RFID tags 
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And in Electronics… 
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IMEC 5 GHz low noise amplifier Voltage regulator module (VRM) 



Transformers 
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 A transformer is used for: 
 Voltage gain/reduction using turn ratios between the primary and secondary 

windings (V1/V2 = N1/N2=I2/I1) 
 Impedance matching through turn ratios (R1/R2 = (N1/N2)2) 
 Ground isolation, can be performed using a 1:1 transformer, or with various turn 

ratios for a voltage change. 
 

Integrated Solenoid 

 Transformer: a device that transfers electrical energy from one circuit to another 
through inductively coupled electrical conductors. 
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Transformers vs. Inductors 

 Mutual inductance is 
 
 

 For 1:1 turn ratio transformers 
 
 

 Large primary and secondary inductances (per 
area) beget large mutual inductances (per 
area)!   
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Inductance & Frequency Tradeoff 
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From A. Ghahary, “Fully integrated DC-DC converters,” Power Electronics Technology, Aug. 2004 
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Discrete inductors 
 Large inductance 
 Large volume 
 Poor AC performance 

Planar spiral inductors 
 Small area consumption 
 Small inductance 
 Limited performance in 
    sub-GHz applications 

http://www.emeraldinsight.com/fig/2180200104013.png�


Solenoid Inductance 
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  Inductance of air core (AC) inductor: 

  Inductance of magnetic inductor: 

LWinding 

∆L 

- Solenoid inductor: 

  Inductance enhancement: 

AMC AAC,eff 

Gain much less than µr,  but still significant. 

Ref.: D.W. Lee, K.-P. Hwang, S.X. Wang, IEEE Trans.  Mag., 44, 4089-95, 2008. 

Due to the demagnetization effect 



Effective Permeability  
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•  lM >> (wMtM)1/2 is preferred to maintain a high effective 
permeability, and greater inductance enhancement. 

•  The demagnetization effect is more severe for a higher µr. 
 

µr = 1000 wM/tM = 64 
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Quality Factor Q & Fundamental Tradeoff 
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→ If ΔL is very small, QMC becomes close 
   to QAC = ωLAC/RAC. If ΔL is very large 
   compared to LAC, QMC approaches the 
   permeability ratio µ’/µ” of the magnetic 
   core. 
 
→ QMC is higher than QAC below the 
   frequency fMC at which QAC and µ’/µ” 
   cross each other, and QMC becomes 
   less than QAC beyond this cross-over 
   frequency. Hence fMC can be considered 
   as the useful bandwidth of the magnetic 
   inductor. 
 
→ Larger Q values are obtained at lower  
    frequencies for a given magnetic core.  
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Ref.: D.W. Lee, K.-P. Hwang, S.X. Wang, IEEE Intl. Magnetics Conf., 2008 



Directions for Magnetic Inductors/Transformers 
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•  The reported device properties tend to have either large ∆L with large 
µ”/µ’ or  small ∆L with small µ”/µ’. The case of large ∆L with small µ”/µ’ 
would be desirable to increase the quality factor and the useful bandwidth 
of the magnetic inductors and transformers. 
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Materials- Loss Mechanisms 
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  Hysteresis loss: 
 The area inside the B-H loop is the energy 

lost per unit volume per cycle 
 Power loss = Frequency x Loop area 
 

 Eddy current loss: 
 The change in the flux density causes the 

eddy current such that it opposes the 
    initial flux changes 
 Classical eddy current loss: 
 
 
 

  Ferromagnetic resonance loss: 
 Imaginary permeability significantly 
    increases as the operation frequency   
    approaches the FMR frequency. 
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Materials- Theory of Laminations 
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Fitting Equations: 

Ref: E. V. D. Riet and F. Roozeboom J. Appl. Phys., vol. 81, Jan. 1997.  

thickness 



Fabricated Laminated Film 
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 Properties measured on sample fabricated on the wafer 
| BACKGROUND | THEORY | MATERIALS | LAYOUT | MEASUREMENTS | RESULTS | CONCLUSION | 
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Kerr Domain Images  
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 For operation, field is applied 
along the hard axis 

 Domain patterns are not 
affected by the underlying 
coil patterning 
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Easy Axis 

Hard Axis 

Background Image 

Kerr Image – Easy Axis Excitation 
100um 

Kerr Image – Hard Axis Excitation 



Device Design 
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 Solenoid-style transformer 
 Interleaved coils, 2 series 
 4/8/16 turns per series  

 Cu coils 
 40 um wide, 3 um thick 

 Ni81Fe19 Core 
  [NiFe(350nm)/AlN(7nm)]8 

 2.8/5.6 um thick 
 150/300/500 um wide 

 Vias 
 7 um total thickness 
 2 um below core, 2 um above 
 30 um diameter 
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16 Turn Transformer 
500 um wide core 

Si 

3 µm Cu 

3 µm Cu 

Magnetic core 

0.6 µm insulator 

2 µm insulator 

2 µm insulator 



Measurement Methods 
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 2-Port Measurement 
 Measure primary with 

secondary open 
 Measure primary with 

secondary short  
 Remove pad parasitics 

using open-short de-
embedding structures 

| BACKGROUND | THEORY | MATERIALS | LAYOUT | MEASUREMENTS | RESULTS | CONCLUSION | 
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Coupling Coefficient- Correction 
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 Measured device has 300 um wide x 5.6 um thick 
core, with 32 turns (16 turns per solenoid) 

 k = 0.97 at 20 MHz (peak Q without the correction) 

| BACKGROUND | THEORY | MATERIALS | LAYOUT | MEASUREMENTS | RESULTS | CONCLUSION | 
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Device Properties vs. N 
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 All devices have: 500 um wide x 5.6 um thick core, two coils in series 

 Coupling coefficient is measured at Qpeak without correction 
 32-turn transformer has inductance enhancement by 60x over 

air-core, and a nearly perfect coupling coefficient at 0.97 
 Air core device had negligible coupling across frequency  

| BACKGROUND | THEORY | MATERIALS | LAYOUT | MEASUREMENTS | RESULTS | CONCLUSION | 
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Device Properties vs. Film Thickness 
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 All devices have: 500 um wide core with 16 turns, two coils in series (8 
turns per solenoid) 

 Thicker core leads to more enhancement in inductance. Inductance 
enhancement in 16-turn transformer (>~20x) is more limited by the 
demagnetization field than that in 32-turn transformer (>~60x).   

| BACKGROUND | THEORY | MATERIALS | LAYOUT | MEASUREMENTS | RESULTS | CONCLUSION | 
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Device Properties vs. Coil Thickness 
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 Thicker coils do not change 
inductances, but can 
increases the quality factor for 
slightly lower frequencies 

 High frequency quality factor is 
determined by magnetic core 
losses and the AC losses in Cu 
coils: 
 
 
 
 

 Quality factor is also limited 
by the LC resonance. 
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Conclusion 
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  High-performance integrated magnetic transformers  were 
successfully designed and fabricated: 
 Inductance enhancement of 60× over the air core equivalent, the 

inductance density reached 178 nH/mm2, and a peak quality factor of 6.3. 
 Compact thin film transformers with coupling efficiency >0.97  

 
 Analytical and numerical models can accurately describe the 

actual device properties: 
 The fundamental trade-offs (∆L vs ∆R) of the integrated magnetic  
 inductors  and transformers can be well understood and utilized for 

optimal design. 
 Magnetic materials selection and characterization by    

permeameter and  Kerr microscope are important for device design 
and experimental trouble shooting. 

| BACKGROUND | THEORY | MATERIALS | LAYOUT | MEASUREMENTS | RESULTS | CONCLUSION | 



Backup Slides 

11/16/2012 Wang Group 23 



Magnetic Inductors/Transformers for Power Conversion 
Fabricated by Stanford Collaboration 

IEEE Trans. Magn. 
2002, p.3168-70  

A.M. Crawford, et al.  

Planar spiral inductor 
with CoTaZr core, 
CMOS compatibility, 
Q ~ 2.7 @ 1 GHz 

On-package solenoid 
inductor with CoFeHfO core, 
Q = 22 @ 200~300 MHz, 
Rdc ~ 10 mΩ 

IEEE Trans. Advanced Packaging, 
32(4), 780-787, 2009 

L. Li, D. W. Lee, et al.  

Planar solenoid inductor with 
CoTaZr core, 
Inductance enhancement over 
air core = 34x  
Q>6 @ 26 MHz 

IEEE Trans.  Mag., 44, 4089-95, 2008 
D. W. Lee, et al.  

 Figure 1. Fabricated magnetic 
transformer with interleaved coils 
(J. Mullenix, S.X. Wang et al.) 

Magnetic transformers 
with laminated NiFe/AlN 
cores 
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