Silicon, GaAs and GaN Technologies for Monolithic DC-DC Power Converter ICs

Mona M. Hella and T. Paul Chow Rensselaer Polytechnic Institute Troy, NY 12180 E-mail: chowt@rpi.edu

PowerSoC

Collaborators

- Han Peng (GE), Vipindas Pala (Cree), Harsh Naik – former and present RPI graduate students
- David Anderson Texas Instruments
- Peter Wright Tri-Quint

Outline

- Device FOM
- Power Converter ICs
 - Si
 - GaAs
- GaN Integration
- Summary

Power Supplies For Portable Electronics

System Trends

- Point of Load power conversion
- IC Voltage Scaling
- Slow Battery Capacity Increase
- Miniaturization

Power Electronics

- Low V High I
- Higher Switching Frequency, Bandwidth
- Integration / System on Chip

PowerSoC

Power Switching Figure of Merit

Comparison of Device Technologies

FOM Technology Comparison

- To take advantage of Wide Bandap for low voltage devices, extremely small scaling rules are required
- GaAs has the best (smallest) FOM for <20V for 0.1µm feature size or above V. Pala, H. Peng, P. Wright, M.M Hella and T.P Chow, "Integrated high-frequency power converters based on GaAs pHEMT : Technology Characterization and Design Examples," *IEEE Trans. Power Electron.*, vol. 27, no. 5, particular 2656, 2012.

T.P. Chow

Phase Shedding/Segmentation

- Operation phases/ segments are switched ON/ OFF depending on different load conditions.
- Maintain constant efficiency at different loads.
 - Easy to extend the load current range by adding more phases.
 - Drawbacks:

Output ripple may be large: large output cap is required.

T.P. Chow

- Require digital control blocks: ADC, etc.

Inductor Coupling in Output Network

- Negative coupled inductors bring better efficiency at two-segment & four-segment operation:
 - Larger equivalent inductance.
 - ➢ Ripple cancellation.

You might want to add equations to prove this

Circuit Implementation

PowerSoC

Circuit Implementation

• HS and LS switches are sized at 5V-to-2.5V conversion ratio and 0.5 A load current.

– PMOS: 40 mm, NMOS: 15 mm.

- Combined HS-LS resonant gate driver with partially shared inductance is adopted.
 - Energy distribution is changed and stored in resonant inductor.
 - Soft switching is realized by deliberated designed gate signals.

Resonant gate driver design

- Energy distribution is changed and stored in resonant inductor.
- Soft switching is realized by modifying the gate signals.
- Tradeoffs between gate driver loss and main switch's switching loss.

PowerSoC

Coupled inductor design

- Coupled inductors are implemented on PC-Board.
- 1 oz, 20 μm thick copper layer.
- Min. 2.7 mil spacing between layers.

	Positive Coupled Ind.	Negative Coupled Ind.	
Area (mm²)	2.58 × 2.37	3.4 × 4.35	
Width (µm)	300	300	
Spacing (µm)	120	200	
Turns	2.5	1.5	
L (nH)	6.27	6.48	
R _{dc} (mΩ)	32	32	
k	0.799	0.397	
Q @ 100MHz	37	45	

PowerSoC

Feedback control loop

- Hysteresis controller for fast transient response and large close loop bandwidth.
- Synchronization between two phase operation:
 - 0.5T delayed signal produced from voltage controlled delay cells.
 - Unbalanced duty ratio will cause current sharing problem.
 - Automatic duty ratio corrector.

Feedback control loop

Eight cascaded delay cells, each producing 0.625 ns delayed signal

with 1.7 V control voltage.

Measurement results

- Implemented in 0.5 μm CMOS technology with 6 Metal layers + 1 distribution layer
- Flip clip package. Vias footprint: 5 X 6
- 4 layer PCB.
- Load capacitor : 47 μ F
- Feedback network:
 - $R_f : 1K\Omega, C_f : 2.7 \text{ pF}$

November 15, 2012

T.P. Chow

Measurement results

Output transient response with Vin=4 V, Vout= 2.3V. Voltage ripple is 50 mV. Tracking model results with sinusoidal reference signal.

PowerSoC

Measurement results

Efficiency vs. output voltage at twophase four-segment operation with resonant gate drivers Phase shedding/segmentation results with Vin = 4 V, Vout= 2 V.

PowerSoC

Results summary and comparison

Technology		рgy	0.5 μm CMOS, 5 V & 1.8 V devices	
Switching frequency		quency	100 MHz	
Die area	CMOS die		7.78 mm ²	
	Positive cou. ind.		6.61 mm ²	
	Negative cou. ind.		15.3 mm²	
Supply voltage		Power stage	4 V	
		Comparator	1.8 V	
Num. of phases/ segments		segments	2 / 4	
Peak Output		put	3 V/1.86 A	
Output voltage ripple		e ripple	50 mV	
Peak efficiency		ency	77.4 %	

Comparison with Prior Art

Ref	Tech.	# Phases	In/Out Voltage V/V	Output Current (A)	Sw. Freq. (MHz)	L (nH)	Peak Eff. (%)
Intel JSSCC'05	90 nm CMOS	4	1.2/0.9	0.3	233	6.8 SMT	82.5
RPI APEC'07	0.18 μm BiCMOS	2	1.8/0.9	0.5	200	2.14 On-die	64
ISSCC '08	0.25 μm BiCMOS	1	3.6/3.1	0.62	130	110 SMT	83
Trans. PE 2012	0.25 μm BiCMOS	1	3.6/2.2	0.33	200	51 SMT	77
ECCE'09	65nm CMOS	1	1.2/0.85	0.08	100	11 on-die	87.5
JSSCC'07	0.35µm СМОЅ	1	3.3/2.3	0.06	200	22 on-die	86
This work	0.18 μm CMOS	2	4/3	1.8	100	5 on-PCB	77.4

PowerSoC

November 15, 2012

T.P. Chow

Comparison with Prior Art

Intrinsic Device ON Resistance

ON Resistance : Interconnect Metallization Scheme

Flip Chip Bonding using Cu Bumps

Layout for Flip Chipped Device

22 and 32V GaAs pHEMTs Figure of Merit

Characterization Results

BV	Gate Width	Current	R _{ON}	Q _G	FOM
22 V	5 mm	0.5 A	268 mΩ	44 pC	12 mΩ.nC
32 V	5 mm	0.5 A	303 mΩ	58 pC	18 mΩ.nC

22V GaAs pHEMT vs Silicon

pHEMT DC-DC Converter : Output Stage Prototype

- Specifications
 - Target Application : Envelope Tracking in RF Amplifiers
 - Switching Frequency =100MHz
 - Buck Type, 4.2-11V in, 1.5-3.5V Out
 - Peak P_{OUT} = 6.6W
 - Target tracking bandwidth : 10MHz
 - pHEMT "Dummy CMOS" Controller

Converter Schematic

Converter Efficiency

Power Loss Components

- At low power, the power losses are dominated by gate drive
- GaAs pHEMT drivers consume static power
- Can be improved by CMOS drivers

PowerSoC

DC-DC Converter Performance

GaAs p-HEMT Resonant Gate

Monolithic Integration

SL-ERC Project S1.3.1:

- Start date: July, 2010
- Duration: Through June, 2018

Objective:

• Develop a process to enable monolithic integration of LEDs, control logic and power transistors. This IC will have the full spectrum of smart lighting features for a wider variety of applications due to reduced package size and cost and improved reliability.

RPI MOS Channel-HEMT

PowerSoC

November 15, 2012

30

T.P. Chow

Optoelectronic IC Integration

The ability to use Silicon as a substrate for LEDs will lead to a lower overall cost. To prepare for this paradigm shift, we have included research on GaN-MOS-HEMTs built on a Silicon substrate.

Left to Right: MOS-HEMT structure for GaN on Silicon, Current LED structure, Proposed GaN-CMOS structure.

GaN controls and power FETs will enable high frequency and high efficiency switching for data and power conversion applications

Integration Approaches

First: Grow wafers with necessary EPI layers, use subtractive etching to make

Experimental Results

Monolithic Integration

LED structure successfully grown on HEMT-structure

- Initial tests show functioning LEDs
- Evaluation of HEMT structure underway via MOS-capacitors

Collaboration with Wetzel (S1.2.2) gives flexibility to grow LEDs on HEMT structure without degrading 2DEG (2D electron gas)

Process compatibility

5

Monolithic Integration

- LED epi selectively etched to fabricate MOS capacitors on HEMT structure
- Etch depth controlled to prevent removal of GaN Cap (20nm thick despite ~800nm etch)
- C∆V yields charge required to deplete 2DEG
- Growth cycle of LED epi did not compromise concentration of 2D electron gas (2DEG)
 - 2DEG of Original epi: 3.2e12/ cm²

References

- H. Peng, and M. M. Hella, "100 MHz CMOS DC-DC Converter with Light Load Efficiency Enhancement," under review, IEEE Trans. on circuits and systems.
- H. Peng, V. Pala, T.P Chow, and M. M. Hella, "100 MHz, 85% Efficient Integrated AlGaAs/GaAs Supply Modulator for RF Power Amplifier Modules," accepted for presentation, APEC 2013, Long Beach, CA, March 2013.
- H. Peng, I. D-Anderson, and M. Hella, "A 100 MHz Two-Phase Four Segment DC-DC Converter with Light Load Efficiency Enhancement in 0.18 µm CMOS Technology," IEEE Custom Integrated Circuits Conference CICC, San Jose, CA, September 2012.
- H. Peng, V. Pala, P. Wright, T. P. Chow, and M. M. Hella, "High Efficiency, High Switching Speed, AlGaAs/GaAs P-HEMT DC-DC Converter for Integrated Power Amplifier Modules. J. Analog Integrated Circuits and Signal Processing. Volume 66 Issue 3, pp. 331-348, March 2011.
- H. Peng, V. Pala, T. P. Chow, and M. M. Hella, "A 150MHz, 84% efficiency, Two Phase Interleaved DC-DC Converter in AlGaAs/GaAs P-HEMT Technology for Integrated Power Amplifier Modules. IEEE Radio Frequency Integrated Circuits Symp. RFIC, Anaheim, CA, May 2010, pp. 259-262.
- H. Peng, T.P. Chow, and M. Hella,"A Highly Efficient Interleaved DC-DC Converter using Coupled Inductors in GaAs Technology", IEEE International Symposium on Circuits and Systems ISCAS, Taiwan, 24-27 May 2009, pp. 2037-2040.

Thank You!

Any Question ?

PowerSoC

Output Network

- Positive coupling (k1):
 - Larger k1 generates larger effective inductance.
- Negative coupling (k2):
 - Ripple reduction is correlated with duty ratio.

November 15, 2012

Effect of Coupling

Efficiency at Higher Freq.

PowerSoC

•Diode and gate drive to ses negligible.

Simulation

- SiC Simulation
 - Switching at 600V, 10A: Power ~6kW
 - Gate Drive: 0 to 20V
- GaN Simulation
 - Switching at 600V, 10A: Power ~6kW
 - Gate Drive: 0 to 5V (Gate turns on for Vg>5V)

Efficiency Comparison

Efficiency

PowerSoC