

Integrated Power Conversion and Power Management

next generation technology for emerging business opportunities

new technologies new applications new markets

Device Technology for GaN-based Integrated Power Electronics

Kevin J. Chen

The Hong Kong University of Science and Technology

Kevin J. Chen

PowerSOC'12

Outline

- GaN's benefits for power electronics
- Technology challenges and solutions
 - Discrete power transistors
 - Integration of power switches and rectifiers
 - Smart power ICs
- Summary

Trends in Power Converters

- High voltage, large capacity, high frequency
- Compact size, smart control and low-cost
- High-temperature operation and low-cost cooling systems

New semiconductor materials with fundamental advantages over Si: GaN and SiC

GaN Power Devices and ICs on Si

GaN: superior material properties

Physical Properties	(Si)	(GaAs)	(4H-SiC)	(GaN)
Bandgap (eV)	1.11	1.43	3.26	3.4
Thermal Cond. (W/ cm·K)	1.5	0.46	3.5	1.5
Breakdown E-field (MV/cm)	0.3	0.3	2.5	2.5~3
e saturation velocity (×10 ⁷ cm/s)	1.0	2.0	2.0	2.5
e Mobility (cm²/V·s)	1300	5000 (2DEG)	600-900	2000 (2DEG)
BHFFOM* (μE _c ²)	1	9.5	45	98

***BHFFOM:** Baliga's high frequency figure of merit

GaN for Power Electronics

Breaking the Si Limit

Lower loss, higher switching frequency, higher operating temperature

GaN and III-nitride: strong polarization

Charge Polarization

- Spontaneous
- Piezoelectric

Commercial AlGaN/GaN-on-Si wafers:

- Ga-face: Positive polarization charges at the AlGaN/GaN interface → high 2DEG density
- Normally-on 2DEG channel without any intentional doping

Challenges for lateral AlGaN/GaN power HEMTs

- Gate control: normally-off operation, low gate leakage and large gate swing
- Surface passivation: low current collapse and low dynamic R_{ON}
- Buffer: low "OFF" state leakage, low trap state density and stress compensation/release
- Substrate: (111) Si --- how to integrate with Si CMOS (on (100) Si)?

GaN normally-off transistor technologies

Normally-off transistor performance (by F implant)

Surface passivation: current collapse reduction

AIGaN/GaN HEMT

Mechanisms of passivation

Surface states compensation --- charge balance
 Field-plate: passivation
 enhancement by E-field

modification

Current collapse reduction – low dynamic *R*_{ON}

• R. Chu, et al., IEEE EDL, vol.32, p.632, 2011

S. Huang, *et al.*, IEEE EDL, vol.
33, p. 516, 2012

Kevin J. Chen

11

Challenge of GaN power device integration

Transistor Switches

✤ <u>Normally-off</u> HEMT, MIS-HEMT

Rectifiers

Conventional candidates: GaN Schottky barrier diode

HEMT-compatible rectifiers

- Schottky barrier diode (SBD) on HEMT
- Higher turn-on voltage
- ON-state reliability issue

Lateral field-effect rectifier (L-FER)

- Low turn-on voltage and onresistance
- Sub-surface forward conduction
 improved reliability

Kevin J. Chen

L-FER performance

R_{ON,sp}: 2.04 mΩ·cm²
 BV: 470 V

Monolithic integration of HEMT and L-FER

GaN Smart Power IC Platform

Performance of integrated devices

Digital IC : Direct-Coupled FET Logic

Proper operation: from room temp. to 350 °C (equipment limit)

* Y. Cai, et al. IEDM Technical Digest, (2005) and EDL, (2007).

The Hong Kong University of Science and Technology

Some basic GaN mixed-signal functional blocks

Kevin J. Chen

PowerSOC'12

19

IN_2

Over-temperature protection IC

Summary

- GaN-on-Si power devices and ICs: an enabler for GaN-based PowerSOC
 - high efficiency, small size and simple thermal management
- Integration of normally-off HEMTs and HEMTcompatible field-effect rectifiers enables single-chip solution to switch-mode power converters.
- GaN smart power ICs with mixed-signal protection/ control functions will enable more robust power converter solution.

