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Integrated Energy Supplies 

n  Power Management 
n  Battery Management 

n  Battery Monitoring 

n  Energy Transmission 

n  Energy Harvesting 

n  System Integration 

n  www.iis.fraunhofer.de/ec/power 

n  www.smart-power.fraunhofer.de 
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Integrating Power Management architectures for 
Energy Harvesting 

1. Challenges of Low Power Converters 

2. Generic Approach 

3. Circuit Examples 

4.  Application Examples 

5.  Summary 
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n  Mobile applications of electronic 
systems become more and more 
popular 

n  Power supply difficult, because  
n  wires are not feasible 
n  batteries limit mobility or produce 

costs 
n  Power output of Energy Harvesting 

transducers is related to their size 
(area, volume) and thus to their price 

n  Power management matches load and 
transducer and cares for maximum 
energy output 

 

Integrating Power Management architectures for Energy Harvesting 
Introduction 
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Integrating Power Management architectures for Energy Harvesting 
Challenges 

n  Environment is not constant - 
ambient energy changes 
 Energy Harvesting must adapt to 
the different sources to harvest 
“what is possible” 

n  Low voltage or current (e.g some 
mVs or µAs) 

n  Sources with variable resistance 
(depending on temperature and 
aging) 

n  AC signal with variable 
frequencies  

n  High dynamic range of amplitudes 
   

 

[rou1] 
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n  Field tests in the trunk of a car, inner-city 
n  Spectrum of acceleration as a measure for energy 
n  Important details for design of vibration transducer and power 

management  
 

 

Integrating Power Management architectures for Energy Harvesting 
Challenges 



© Fraunhofer IIS   8  11/16/2012    

n  Dedicated blocks, depending on energy source, ambient 
conditions and application 

n  Not all are required in any application and with any source  
n  Focus on rectifier, dc-dc converter, MPPT and ac-dc converter 
n  Charger/limiter/protection often to some extent redundant, 

because of small currents 
n  DC-DC between storage and load state-of-the-art component 

Integrating Power Management architectures for Energy Harvesting 
Generic Approach 

Energy-­‐
Transducer Rectifier

DC/DC
MPPT

Charger/Limiter/
Protection Storage DC/DC

Storage
Application/

Load

Ambient	
  
Energy
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Integrating Power Management architectures for Energy Harvesting 
DC-DC Converter for Thermogenerators (TEGs) 

n  Coupled inductor DC-DC converter starts with 20 mV due to JFET 
(Junction Field Effect Transistor) and transformer 

n  Works with minimum thermal gradient (2-3K), depending on TEG 
n  Efficiency between 30 and 75 %, improves with input voltage 

VDD 

IT2 

IT1 

VC
1 
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Integrating Power Management architectures for Energy Harvesting 
DC-DC Converter for Thermogenerators (TEGs) 

n  Broad input range with 
reasonable efficiency 

n  ASIC design reduces 
volume and costs (CMOS 
180 nm, 1.5*1.5mm) 

n  All components on-chip 
except transformer 
(L1=500µH, L2=12mH) 
and output-C 

n  ASIC works with 
VIn=20 mV 

n  Better performance as 
discrete circuit 

n  Looking for companies to 
commercialize IC 
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Integrating Power Management architectures for Energy Harvesting 
DC-DC Converter for Thermogenerators (TEGs) 

n  DC/DC converter controlled by 
microcontroller 

n  Start up circuit starts at 70mV 
n  Digitally controlled maximum 

power point tracker 

n  Integrate your own application 
n  Algorithm is portable 
n  Regulation of input or output 

power 
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Thermo	
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DC -­‐DC 	
  C onverter
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Energy	
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DC -­‐DC -­‐C onverter

Tranceiver

Integrating Power Management architectures for Energy Harvesting 
DC-DC Converter for Thermogenerators (TEGs) 

n  Low-voltage dc-dc 
converter enables 
operation with low thermal 
gradient 

n  Thermo-electrical power 
supply for wireless 
sensors 

n  T-sensor and transceiver 
supplied with 2 K delta T 
(2 mW) 

n  Application example: 
human body 
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Integrating Power Management architectures for Energy Harvesting 
AC-DC Converter for Piezo-Generators (PEGs) 

n  Piezo-transducers provide 
minimum amounts of 
charge/current 

n  State-of-the-art: 
rectification and filtering 

n  Problem: capacitive 
nature of piezo >> 
voltage and current 
phase-shifted (capacitor) 
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n  Modified parallel 
SSHI converter: 
Synchronized switch 
harvesting on 
inductor 

n  Switched inductor 
shifts V and I in-
phase >> Power 
maximum 

n  Reduces number of 
diodes to two 

n  Challenge: Low-
power control circuitry 

n  Optimization: Avoid 
voltage drop and 
ohmic losses  

Integrating Power Management architectures for Energy Harvesting 
AC-DC Converter for Piezo-Generators (PEGs) 
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Integrating Power Management architectures for Energy Harvesting 
AC-DC Converter for Piezo-Generators (PEGs) 

n  Challenge is the control 
circuit 

n  Power supply directly from 
input Vin 

n  Peak detection with 
differentiator for certain 
bandwidth [ben1] 

n  R1, C1, D3, D4 act as 
differentiator for low 
frequencies [mat1] 

n  Broadband control circuit 
can enable broadband or self-
adjusting AC-DC converter 
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n  AC Load (green): 
Matched resistor 

n  Standard (black): 
Simple rectifier and filter 

n  Parallel SSHI (pink) 
n  Modified parallel SSHI 

(red) 

n  Top: DuraAct piezo, 
0,1g, 17,2 Hz 

n  Bottom: Midé piezo, 1g, 
110 Hz 

Integrating Power Management architectures for Energy Harvesting 
AC-DC Converter for Piezo-Generators (PEGs) 
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Integrating Power Management architectures for Energy Harvesting 
AC-DC Converter for Piezo-Generators (PEGs) 

n  ASIC-Layout 
n  All components on-chip except 

inductor 
n  Power consumption: 

ca. 35 µW at 20 Hz 
n  Technology: AMS H35B4 
n  Max. Voltage ca. 40 V 
n  Chip-Size 2.2*2.3 mm 
n  Currently: Test and evaluation 
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Integrating Power Management architectures for Energy Harvesting 
Bridge Monitoring 

Pilotinstallation an einer Brücke (Länge 359m) der BAB 3 – Mainquerung bei Dettelbach (Bayern) 

n  BMBF-Project PiezoEN with Wölfel Beratende Ingenieure GmbH + Co. KG 
and Invent GmbH 

n  Goal: Self-powered sensor system for structural health monitoring 
n  Analysis of bridge reveals natural frequency: Tuning of generators 

n  Test structures for evaluation of power output, substrate materials, piezo-
patches, etc.  
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Integrating Power Management architectures for Energy Harvesting 
Bridge Monitoring 

n  Power output: max. 0.8 mW, mean 0.1 
mW per piezo patch 

n  f=2.25 Hz 
n  Bridge is not space-limited: 10 

patches produce 1 mW  

Electrical Voltage 
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Integrating Power Management architectures for Energy Harvesting 
Self-powered Tracking System 

n  Customer survey reveals 
n  Transmission once per day is OK 
n  Accuracy should be 100 m 
n  Position update every 5 min                         

(350 mW*5 s*288=504 Ws) 
n  Power consumption depends significantly on 

duty cycle of data transmission 
>>15 mW for 15 h (810 Ws) is presently 

calculated for a positive power budget 
n  Target applications: Railway trains, trailers,

… 
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Integrating Power Management architectures for Energy Harvesting 
Summary 

n  Ambient energy sources are not 
constant 

n  Power output is critical 
n  Most power available if load matches 

source 
n  Power management ensures 

maximum power output 
n  Adapt as much as possible to the 

energy transducer (MPPT, SSHI) 
n  Transducers can be shrunken due to 

more efficient power management 
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Thank you for listening! 
 
Any questions…..? 
 

n  Contact: Henrik Zessin 
Fraunhofer-Institute for Integrated Circuits 
Nordostpark 93 
90411 Nuremberg 
Tel. 0911 / 58061 6425 
henrik.zessin@iis.fraunhofer.de 

n  www.iis.fraunhofer.de/ec/power 

n  www.smart-power.fraunhofer.de 
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