

High Voltage transistors for SoCs in baseline CMOS

Anco Heringa, Jan Šonský

NXP Research Leuven, Belgium

Anco.Heringa@nxp.com

Outline

- Applications
- Circuit vs. technology solutions
- ED-MOS in baseline CMOS
- Innovative Layout-based HV
- ► EZHV > 500 Volt SOI
- Conclusions

Applications

Why voltages higher than nominal in modern CMOS?

- Nominal CMOS logic voltages keep decreasing (example: 65 nm logic/IO = 1.2V/2.5V)
- Circuits need to interface outside world
- Trend to implement analog, mixed signal, smart power lcs in sub-100nm CMOS in SoC style

Application domains ...

- Power management units portable applications (cell phones or iPod), all battery connected circuits
- Power amplifications power amplifiers for RF applications
- Solid state lighting drivers for advanced LEDs
- ► Memory peripherals e-flash drivers

sub-10 V 10 - 20 V 20 V 30 - 50 V

Applications – wireless SoCs

Motivation

SoC integration = total cost, component and space reduction

Applications – embedded PMU

Function & circuits

- Battery voltage conversion to digital/SoC/HV supply voltage
- ► Voltage regulators (LDO) and DC:DC converters

2 chip solution

Applications – embedded PMU

ePMU example (cell phone)

Circuit vs. technology solutions

Circuit solution

- Competitive in dense CMOS
- Popular with design houses
- ... but it has its limitations!

Technology solution HV transistors

- Best-in-class DC/RF performance
- Can enable unique functionality
- must be in baseline CMOS

Circuit vs. technology solutions

	5V solutions		20V solutions	
	Baseline HV	I/O cascode	Baseline HV	Alt.?
Chip area (R-on)				
Circuit simplicity				
Power consumption				
High speed / RF				??
IP maturity				
Time-to-availability				
Technology cost				

Differentiating value

Baseline HV

- For a higher breakdown voltage space is needed (30 V/µm) Lower doping is needed; different options possible
- ► Here the Nwell; self-aligned extensions

- ► For a higher breakdown voltage space is needed (30 V/µm)
- ► Here the N- as extended drain

Extended Drain for both NMOS and PMOS

ED-NMOS

ED-PMOS

Typical 65nm baseline foundry CMOS

- ► Dual gate oxide core (1.2V) and IO (2.5V)
- Multiple threshold voltage (2 or 3 VT)
- ► LP process with 7-9 metal layers

ED-MOS optimization

- ► HCI lifetime 10y
- ► RF performance

non-silicided drain-extension

Optimization in device layout only, no process tuning!

ED-MOS: 10y+ Hot Carrier Injection lifetime

Hot Carrier Injection Reliability for ED-N/PMOS

- ► Re-design in device layout optimization without process modification
- Reliability-friendly innovation has only minor influence on performance

ED-NMOS	Lifetime	R-on	BV _{DS}	l _{off} (5.5V)
	(years)	(mΩ.mm²)	(V)	(pA/mm)
conventional	0	2.8	15	0.5
re-design A	0.25	3.4	19	1.3
re-design B	16	3.2	18	1.4

ED-MOS: 10y+ HCI lifetime

ED-NMOS

ED-PMOS

The underlying idea

- ► Use CMOS process blocks and scaling features beyond its original purpose
- Gate and active/STI masks has undergone tremendous reduction in size, spacing and alignment accuracy
- ► 65nm CMOS example:

Gates (=poly) ~ 60 nm, Active (=silicon) < 100 nm, STI (=oxide) < 130 nm

Implementation

- Structures in poly can act as more than gates
- STI patterns can be more than just MOS-to-MOS isolation
- Bulk CMOS 65nm baseline foundry process Dual gate oxide – core (1.2V) and IO (2.5V) Multiple threshold voltage (2 or 3 V_T) LP process with 7-9 metal layers

ED-NMOS

Max. Vdd set by doping

DIELER NMOS

Max. Vdd set by STI/active ratio (not only by doping)

- ► Key requirement: W_{si} < W_{DEPL}
- Steering parameters: W_{STI}, W_{si}

Substrate current: measure of avalanche

- Body (hole) current is measure of avalanche determined by field peak.
- At high extension doping field peak at gate edge
- ► At low doping at N+ drain
- ► At high current at N+ drain

Innovative layout-based HV Novel field plates by gate fingers

23

gate fingers

Novel field plates by gate fingers

Layout solution delivers Ron-BVds trade-off on par with best-in-class process optimized (costly) solutions

- Optimum W_{si}/W_{sti} for DIELER (=0.6) and Gate Field Plate (=1.5)
 - Extension resistance (Ron) lower with Gate
 Field Plate
 - Breakdown voltages comparable
 - Superior performance
 Gate Field Plate

Novel field plates by gate fingers

- Ultimate control of electrical fields by exploring fine gate patterning
- ► Boost performance (R-on) and improve reliability

Innovative layout-based HV: Hybrid MOS

Gate oxide thicknesses only for 1.2 Volt and 2.5 Volt ! How to implement high gate voltage ?

Innovative layout-based HV: Hybrid MOS

Gate oxide "thickness" by layout ! Lateral gate + lateral field plate enables HV_{gs} and HV_{ds}

- Exciting opportunities for novel HV transistor concepts
- Limited only by one's creativity and imagination
- Ultimate flexibility in device optimization is possible
- Multiple-voltage domains optimization without process complexity
- Unique features, e.g. "doping" grading and field-plate capacitor tapering, become possible

Extreme High Voltage SOI

Power Conversion

- Due to ringing and due to surges (e.g. lightning) the effective input voltage can become much higher than mains in mains connected devices
- Mains connected circuits become hot !
- SOI: isolation, size, low leakage(@high temperature)

Cross section of a 700V Ldmos in EZ HV

Fig. 1. Schematic cross-section of a thin-film SOCOS LD-MOS SOI device structure indicating some key design features.

Ron/BV for 700V smartpower HV Technologies

EZHV process, some characteristics

► Thick SOI process:

- SOI=1.5 µm
- BOX (oxide between handler wafer and SOI): 3 µm
- Available devices:
 - Low voltage NMOS and PMOS
 - NPN
 - EHVPMOS: 650 Volt
 - EHVNMOS: 650 Volt
 - EHVLIGBT: 650 Volt

Summary

Summary

- ► There is a plenty of room for device innovation in baseline CMOS
- ► The innovation expands the DC (and RF) domain of CMOS technology
- Special Extreme High Voltage SOI processes enable mains connected smart power IC's
- Combining application/circuit knowledge, device physics and process technology is needed for differentiating products

References (acknowledgements)

- ► J.Šonský, A.Heringa, IEDM 2005
- ► A.Heringa, J.Šonský, ISPSD 2006
- ► J.Šonský, A.Heringa, ISPSD 2007
- J.Šonský, A.Heringa, J.Perez-Gonzalez, J.Benson, P.Y.Chiang, S.Bardy, I.Volokhine, VLSI-TSA 2008
- A.Heringa, J.Šonský, J.Perez-Gonzalez, R.Y.Su, P.Y.Chiang, ISPSD 2008
- J.Šonský, G.Doornbos, A.Heringa, M. van Duuren, J.Perez-Gonzalez, ISPSD 2009
- J.Perez-Gonzalez, J.Šonský, A.Heringa, J.Benson, P.Y.Chiang, C.W.Yao, R.Y.Su, ISPSD 2009

