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Adapted from: Gerhard Schrom et al., Feasibility of Monolithic and 3D-Stacked DC-DC 

Converters for Microprocessors in 90nm Technology Generation, ISLPED 2004, pp. 263-268.

0
.2
9
 m

Ω

0
.5
 m

Ω

0
.6
8
 m

Ω

3
3
 p
H

4
0
0
 p
H

1
3
7
 p
H

5
6
0
0
 µ

F

2
6
4
 µ

F

2
6
4
 µ

F
• DC/DC VRM on Motherboard

• 2D Power Delivery with Increasing 
Power and Ground Pin Counts

• Large Amount of Decoupling Caps

• Parasitics Deteriorate Voltage 
Regulation and Reduce Efficiency

Power Delivery Bottleneck

2D Power Delivery
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3D Power Delivery Alternatives

• 3D Structure Solves Problems 
of 2D Power Delivery

• Proposed 3D Approach 
– Monolithic DC-DC Converter
– 3D Integration with Processor 
using Wafer-Level 3D IC 
Technology Platforms

Vertically Packaged 

Converter

(US Patent 

#7012414)

RPI Baseline Wafer-Level 3D

(adhesive bonding: via-last)
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• Minimize Interconnect Parasitic Effects (particularly inductance)

• Easy to Supply and Distribute Multiple Supply Voltages  

(cellular architecture based on common building blocks)

• Flexible Platform Enables Dynamic Voltage Scaling and Control

• Uniform, High-Density Power/Ground Vias to Microprocessors

• Fine Grain Power Control (temporally and spatially)
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Monolithic 3D Advantages

Prototype 
Converter Cell 

Design

Top View of DC-DC Converter Die
(Cellular Design)
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3D IC Technologies
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• Die-to-Die (System-in-Package)

(currently used to increase functionality and reduce form factor)

• Die-to-Wafer and Wafer-to-Wafer Offer Increased Capabilities 
– Higher Interconnect Density

– Higher Performance Capability

• Wafer-to-Wafer Offers Lowest Cost (increased use of monolithic 
integration, similar conceptually to Wafer-Level Packaging (WLP))

Die-to-Die Hybrid Die-to-Wafer Wafer-to-Wafer
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Wafer-to-Wafer Bonding Alternatives

Adhesive BondingDirect Metal BondingDirect Oxide Bonding

SiO2

Cu

SiO2SiO2
Inter-Level Dielectric

AdhesiveAdhesive

Inter-Level Dielectric

AdhesiveAdhesive

Common process requirements:

- wafer–to–wafer alignment

- wafer bonding

- wafer thinning

- inter-wafer interconnections

(via-last) (via-first) (via-last)
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Adhesive Bonding: Via-Last

(RPI Baseline)

Device 
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Plug ViaBridge Via

Substrate

Substrate

Dielectric

Dielectric
Bond

(Face-to-back)

Device 
surface
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Cu-Cu Bonding (inherently via-first)

Device 
surface

Cu Bond
(Face-to-face)

3rd Level
(Thinned

Substrate)

2nd Level
(Thinned

Substrate)

1st Level

Substrate

Substrate

Cu Bond
(Face-to-back)

Device 
surface

Device 
surface

Substrate

Multi-level on-chip interconnects

Tezzaron in pilot manufacturing for memory stacks
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Adhesive Bonding: Via-First

(RPI Redistribution Layer Bonding)

Multi-level on-chip interconnects

Device 

Surface Substrate

Dielectric 

Adhesive

Cu 
barrier

Metal

3rd Level
(Thinned

Substrate)

2nd Level
(Thinned

Substrate)

1st Level

Inter-wafer pads or I/Os & power/ground

Interconnect

Bonding strength 

advantages of 

adhesive bonding 

with process flow 

advantages of 

via-first

Partially-cured 

BCB is a viable 

bonding adhesive

Patent pending: 

20070207592 [9/07] 
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Wafer-to-Wafer 3D Technologies:

Summary 

• Oxide-to-Oxide Bonding
• Copper-to-Copper Bonding
• Dielectric Adhesive Bonding

• RPI Wafer-to-Wafer 3D 
Platform focusing on Hyper-
Integration Applications:

– Adhesive Wafer Bonding 
and Copper Damascene 
Inter-Wafer Interconnects

– Wafer Bonding of 
Damascene-Patterned 
Cu/Adhesive Redistribution 
Layers (analogous to WLP)

Multi-level on-chip interconnects

Device 

Surface Substrate

Dielectric 

Adhesive

Cu 
barrier

Metal

3rd Level
(Thinned

Substrate)

2nd Level
(Thinned
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1st Level

Inter-wafer pads or I/Os & power/ground

Interconnect
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Wafer-to-Wafer 3D Technologies:

Personal Perspectives
• Wafer-to-wafer (wafer-level) 3D in high-volume 

manufacturing driven by integrated device manufacturers 
(IDMs) and, possibly, foundries.

• Major technology issues are (1) die yields, (2) stress,         
and (3) design tools for signal and power integrity.

• Major impediments are (1) IC industry structure and             
(2) IC design methodologies and traditions.      

• Near-term products include (1) memory stacks              
(DRAM, SRAM and NVM) and (2) image sensors.

• Long-term objectives are (1) high-performance processors,    
and (2) heterogeneous integration (sensors, wireless,       
optical, bio-MEMS and digital processors).

• 3D enables integration of  nanotechnology with CMOS       
ICs, providing a feasible nano/micro interface. 
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Prototype 
Converter Cell 

Design

Top View of DC-DC Converter Die
(Cellular Design)

DC-DC Converter Requirements

• Fully Monolithic for Wafer-Level 3D Compatibility
– On-Chip Passives

– High-Frequency Switching to Minimize Passive Components

– Compatible with Microprocessor Steady-State and Dynamic Power Requirements

• Modular Design and Cellular System Architecture 
– Easy Scalability

– Supply of Multiple Different Voltages 

– Dynamic Reconfiguration
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• Demonstrate Feasibility of Fully Monolithic DC-DC 
Converters using IC Foundry Processing 

– Submicron CMOS Process for Power Train

– On-Chip Passives

– Design Trade-Offs (Frequency, Size, Efficiency)

– Implement High Bandwidth Analog Control

• Provide a Platform for Performance Evaluation

– Active Devices, Passives, Interconnects

– Efficiency, Steady-State and Dynamic Regulation

– Compatibility with Wafer-Level 3D Integration

• Identify Barriers and Future Opportunities

Prototype Design Objectives
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Prototype Design

Vout = 0.9-1.2 VVin = 1.8-2.5 V

C = 4.11 nF

Iout = 2x0.5A

L = 2.14 nH

Two-Phase 

Interleaved Buck

On-Chip Active 

Loads for 

Dynamic Testing

PMOS Control 

Switch (16.6 mm 

Total Gate Width, 

RDS(on) = 152 mΩ )

IBM BiCMOS

7WL (180 nm) 

Process

Adjustable 

Dead Time 

between        

CS and SR

NMOS 

Synchronous 

Rectifier (11 mm 

Total Gate Width, 

RDS(on) = 62 mΩ )

Inductor

RDC = 201 mΩ
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Prototype Design (continued)

• 200 MHz Switching Frequency

• Linear, Voltage-Mode Feedback Control

– ~10 MHz Control Bandwidth

– Utilization of Op-Amp Internal Poles and Zero

• High-Speed Comparator for Pulse-Width Modulation
1.8 V

VOUT

Vb

VIN,upperVIN,lower

M2M1 M3 M4

M5 M6

R1 R2

VIN

VREF VOUT

1.8 V

CC

RZ

M5

C2

R1

R2

ISS 2ISS

M1 M2

M3 M4
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31Bond Pads / ESD

11Converter / Control

27Output Capacitors

31Decoupling Capacitors

Area Occupied (%)

• Large decoupling caps are used to 

limit di/dt induced voltage spikes 

caused by discontinuous input 

currents

• Significant reduction of capacitance 

is possible by interleaving multiple 

converter cells
Fabricated through MOSIS – IBM 7HP

Fabricated Chip Micrograph
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• Operation with One Phase Fully Characterized

• Output Voltage Ripple at 200 MHz, with a 

Maximum Peak-Peak Ripple of 40 mV       

(with two phases ripple reduced to 14 mV)

• 62.2% Efficiency with 550 mA Output Current

(modest decrease when lightly loaded)
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• 50% Load Current Switching Using On-Chip Active Load

• Load Step-Up Response Better than Step-Down

• Opportunity for Compensator Design Optimization

Measured Dynamic Performance
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• Potential for Meeting Processor Power Requirements

– Small on-chip passives with cellular architecture

– Wide bandwidth control enabled by high switching frequency

– Fine-grain power control (temporally and spatially)

• Air-Core On-Chip Inductors Limit Efficiency Potential

– High DC resistance due to large number of turns

– Small inductance capability forces a high switching frequency, 

leading to high switching losses

• Input and Output Capacitors Dominate Size, thereby    

Limiting Output Current Density

– Input capacitors more dominant

– Size reduction required for compatibility with processor footprint

(particularly with future microprocessor technologies) 

Performance Evaluation
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Frequency-Efficiency Optimization
– Higher Inductance permits Operation at Lower Switching 

Frequency (e.g. in  50-100 MHz range)

– Required Control Bandwidth (~10 MHz) can be maintained

Inductors on a Separate Wafer Layer

– Decouple Inductor Processing from Active 
Devices and Control Circuitry

– More Flexibility in Winding Designs

– Use of Thicker Metal than Available in 
Typical CMOS Processes

– Potential to use Ferromagnetic Materials

– Natural Fit in overall 3D Architecture

– Benefits due to EMI Shielding if placed 
between Active Circuits and Processor                           

Efficiency Improvement

Note: High-k Dielectrics can also be added in    

Passive Wafer to reduce Die Area, thereby 

increasing Output Current Density                      
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Current Rating Scaling

Prototype: 

Each Cell 

Supplies 1 A 

and has a 

Footprint of 

~6.8 mm2

• Intel Duo Core Processor requires 2x34 A (an 8x8 array of prototype 
converters occupies ~440 mm2).

• Significant reduction in chip area can be achieved by interleaving,           
for output and input ripple cancellation.

• Increase of output current density can be achieved (from 15 A/cm2 to
~100 A/cm2) with scaled prototype area of ~ 65 mm2 for Intel Duo Core.
Note that separate passive stratum reduces area requirement further.

Prototype Area Breakdown
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Filter Capacitor Sizing

• Interleaving cancels output ripple, but output capacitors cannot
be reduced appreciably due to energy storage requirement.

• Interleaving is also found to cancel input ripple, so that input
filter capacitors do not scale linearly with current rating.

5 10 15 20
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10 Interleaved 
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Prototype Area Breakdown

(ns)
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3D Power Delivery: Summary

• 3D Architecture Eliminates Power Delivery Bottleneck
Ultimate “Point-of-Load” Power Conversion Technology

Key Metrics: Current Density and Conversion Efficiency

• Wafer-Level 3D IC Technology Provides an Attractive 
Platform for 3D Power Integration

• On-Chip Passives are Sufficient for Meeting Processor  
Steady-State and Dynamic Power Requirements

Intel Polaris 80-Core  
Teraflop CPU

275 mm2, 64 W

• 3D also Provides a Platform for Efficiency 
Improvement of Monolithic Converters

• Cellular Architecture Maximizes Design 
Flexibility and Scalability
– Multiple Supply Voltages

– Dynamic Voltage Control

• 3D is Well Suited for Future Multi-Core CPUs
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Additional Comments

• Stacked interleaved topology for low DC-DC ratios               
(J. Wibben and R. Harjani, “A High-Efficiency DC-DC 
Converter using 2 nH Integrated Inductors”, IEEE Jour. Solid-
State Circuits, Vol. 43, April 2008, pp. 844-854).

• Architecture key for powering advanced processors           
(D.J. Mountain, “Analyzing the Value of using Three-
Dimensional Electronics for a High-Performance 
Computational System”, IEEE Trans. Advanced Packaging, 
Vol. 31, Feb. 2008, pp. 107-117).

• Lower power converters useful for wireless applications, 
complementing our focus on high power density applications

(envelope-tracking linear RF/microwave amplifiers, wireless 
transceivers, and power harvesting applications).
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