1st International Workshop on Power Supply on Chip (PwrSoC) 08

22.09.08, Cork, Ireland

<u>Peter Spies</u>, Frank Förster, Loreto Mateu, Markus Pollak peter.spies@iis.fraunhofer.de

Fraunhofer Institut für Integrierte Schaltungen IIS Nordostpark 93, 90411 Nürnberg

Fraunhofer IIS: Department Power Efficient Systems Technologies for Terminal Devices

Energy Systems

- Power Management
- Battery Management
- Battery Monitoring
- Energy Transmission
- Energy Harvesting

- www.iis.fraunhofer.de/ec/power
- www.smart-power.fraunhofer.de

Fraunhofer Institut Integrierte Schaltungen

3rd Fraunhofer Symposium Micro Energy Technology

Agenda

- Introduction
- Energy Harvesting Sources
- Energy Harvesting Transducers
- Semiconductor Roadmap (ITRS)
- Low-voltage DC-DC Converter
- Discontinuous Mode
- Maximum Power Point Tracker
- Summary and Conclusions

Introduction

- power consumption of electronic circuits and systems is decreasing more and more
- efficiency of energy transducers (e.g. thermogenerators [TEGs], piezoelectric modules, solar cells) is being further optimized
- energy from the environment to supply electronic devices: 'Energy Harvesting'
- application devices: sensors, wireless transceivers or displays
- application fields: structural health monitoring, medicine, consumer products, automotive, logistics, security, household, etc.

Introduction

- key role of power management as interface between transducer and load
- duties of power management :
 - matching voltage and current profile of transducer and load
 - supply voltage regulation
 - minimization of power consumption
 - management of required storage devices
- power management is the <u>'enabling technology'</u> for energy harvesting power supplies
- improvement of the power management >> increase of application areas and development of new application fields

Energy Harvesting Sources - Vibration

- peak acceleration:
 0.1...10 m/s² (about
 0.01...1 g)
- frequency range:60...385 Hz

Vibration Source	Peak Acc. (m/s ²)	Frequency of Peak (Hz)
Base of 5 HP 3-axis machine tool with 36" bed	10	70
Kitchen blender casing	6.4	121
Clothes dryer	3.5	121
Door frame just after door closes	3	125
Small microwave oven	2.25	121
HVAC vents in office building	0.2 - 1.5	60
Wooden deck with people walking	1.3	385
Breadmaker	1.03	121
External windows (size 2 ft X 3 ft) next to a busy street	0.7	100
Notebook computer while CD is being read	0.6	75
Washing Machine	0.5	109
Second story floor of a wood frame office building	0.2	100
Refrigerator	0.1	240

[rou1]

Energy Harvesting Transducers - Vibration

Perpetuum

Ferro Solutions

Company	Principle	Power output	Volume
Perpetuum PMG17	Electro- dynamic	1 mW @ 0.025 g rms, 2 Hz BW; 45 mW @ 1 g rms, 15 Hz BW;	d=55 mm h=55 mm
Perpetuum PMG27-17	Electro- dynamic	2 mW @ 25 mg, 17.2 Hz	d=53 mm h=53mm
Ferro Solutions VEH360	Electro- dynamic	0.8 mW @ 20 mg, 60 Hz; 10.8 mW @ 100 mg, 60 Hz; 50% in 3 Hz	d=66 mm h=39 mm
HSG-IMIT	Electro- static	1 μW – 50 μ W	5 * 6 mm
HSG-IMIT	Piezo- electric	320 μW @ 220 Hz, 5 μm	46*20*10 mm
HSG-IMIT	Electro- dynamic	10 μW – 100 mW	1 cm^3 – 1 dm^3
Midé PEH25W	Piezo- electric	6 mW @ 1 g rms, 30 Hz 0.8 mW @ 1 g rms, 100 Hz	92*44.5*9.9 mm
Midé PEH20W	Piezo- electric	8 mW @ 1 g rms, 50 Hz; 1.8 mW @ 1 g rms, 150 Hz	92*44.5*9.9 mm

Energy Harvesting Transducers - Thermal Gradient

Peltron

Fraunhofer IPM, Micropelt

International Technology Roadmap for Semiconductor (ITRS)

- supply voltages and currents are decreasing
 support for Energy Harvesting
- 2022 still 0.7 V >> need for dc-dc up conversion
- device is shrunk in geometrical size (Tox, L)
 >> leakage currents will increase

Year of Production	2016	2017	2018	2019	2020	2021	2022
DRAM ½ Pitch (nm) (contacted)	22	20	18	16	14	13	11
Performance RF/Analog [1]							
Supply voltage (V) [2]	0.8	0.8	0.8	0.8	0.75	0.75	0.7
T_{ox} (nm) [2]	1.1	1.1	1	1	0.9	0.9	0.8
Gate Length (nm) [2]	16	14	13	12	11	10	10
g_m/g_{ds} at $5 \cdot L_{min\text{-digital}}$ [3]	30	30	30	30	30	30	30
$1/f$ -noise ($\mu V^2 \cdot \mu m^2/Hz$) [4]	50	50	40	40	30	30	30
σ V _{th} matching (mV·μm) [5]	4	4	4	4	3	4	5
$I_{ds}(\mu A/\mu m)$ [6]	4	3	3	3	2	2	2
Peak F _t (GHz) [7]	550	630	670	730	790	870	870
Peak F _{max} (GHz) [8]	710	820	880	960	1050	1160	1160
NF _{min} (dB) [9]	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Precision Analog/RF Driver [1]							
Supply voltage (V)	1.8	1.8	1.8	1.5	1.5	1.5	1.5
T _{ox} (nm) [10]	3	3	3	2.6	2.6	2.6	2.6
Gate Length (nm) [10]	180	180	180	130	130	130	130
g _m /g _{ds} at 10·L _{min-digital} [11]	160	160	160	110	110	110	110
1/f Noise (μV ² ·μm ² /Hz) [4]	180	180	180	135	135	135	135
σ V _{th} matching (mV·μm) [5]	6	6	6	5	5	5	5
Peak F _t (GHz) [7]	50	50	50	70	70	70	70
Peak F _{max} (GHz) [8]	90	90	90	120	120	120	120

PAGE 10

Manufacturable solutions exist, and are being optimized
Manufacturable solutions are known
Interim solutions are known
Manufacturable solutions are NOT known

Requirements

- due to properties of energy sources, transducers and semiconductor technology development:
 - minimum start-up / supply voltages
 - zero-power standby-modes
 - minimum leakage currents
 - maximum efficiency at small loads / load range
- first solutions:
 - low-voltage dc-dc converter
 - discontinuous mode
 - maximum power point (MPP) tracker

- threshold voltages of semiconductor technologies are scaled down
- nevertheless: gap between output of energy transducers and minimum input of voltage converters (e.g. 0.7 V)
- thermo-generators: about 50 mV per Kelvin
- solar/fuel cells: about 0.5 V
- to use minimum amounts of energy (small temperature gradients, little illumination) low-voltage dc-dc up converters
- special low-threshold transistors or dedicated dc-dc converters architectures

- coupled inductor dc-dc converter starts with 20 mV due to JFET
- turns ration L1:L2=1:17

- efficiency between 50 and 78 %
- depending on input voltage and load current

Efficiency vs. Load Current Vout=2 V

- ASIC-Design: Layout (CMOS 180 nm, 1.5*1.5mm) and simulations (L1=500µH, L2=12mH)
- all components on chip except transformer and output C

- low-voltage dc-dc converter makes operation with low thermal gradient possible
- thermo-electrical power supply for wireless sensors
- T-sensor and transceiver supplied with 5 K delta T (2 mW)
- application example: human body

Discontinuous Mode

- supply / standby currents of dcdc converters exceed output of transducers
- discontinuous mode converts energy in small time slots
- sleep mode reduces power consumption of converter
- working with higher currents improves efficiency of converter
- voltage detectors with small power consumption needed

Maximum Power Point Tracker (MPP)

- changing environmental conditions influence efficiency of transducers
- intelligent power management ensures maximum power output
- impedance matching with regard on maximum output power (state-of-the-art: dc-dc with voltage regulation loop)
- energy storage required
- most concepts with μC and digital HW are not suited for Energy Harvesting due to power consumption
- analogue circuit techniques (opamp with 1µA) can solve conflict with lower precision

Maximum Power Point Tracker

- switching frequency (duty cycle) is controlled and output power measured
- increasing output power: duty cycle is changed further in the same direction and vice versa
- example: If the optimum duty cycle with ΔT=6.7K, Dopt1, is fixed, with ΔT=26.93K more than 100% of power is lost
- application: indoor-outdoor use

D

Maximum Power Point Tracker (MPP)

- battery voltage nearly constant, thus only current measurement
- implementation via feedback loop for control of switching transistor (Vcurrent >> Vcontrol)

Summary and Conclusion

- state-of-the art power management circuits not well suited for energy harvesting
- first improvements under development
- additional functionality required (detectors, start-up circuits, MPP trackers), which must not degrade efficiency
- IC technology development facilitates energy harvesting
- still a lot of unsolved challenges: leakage / standby currents, efficiency versus load range, start-up / supply voltage

Thank you for your attention!

...any questions?

Energy Harvesting Transducers - Summary

Fraunhofer ISE

是国际的	

Fraunhofer IPM

Energy Source	Power Density for 10 Years
Solar (outdoor)	15,000 µ W/cm³
Solar (indoor)	6 µW/cm³
Vibrations (piezoelectric)	250 µW/cm³
Vibrations (electrostatic)	50 μW/cm³
Acoustic noise	0.003 µW/cm³ (at 75 dB)
Temperature gradient (thermoelectric)	15 µW/cm³ (at 10 °C gradient)
Batteries (non-rechargeable)	45 μW/cm³ (for one year)
Batteries (rechargeable)	7 μW/cm³ (for one year)
Hydrocarbon fuel (micro heat engine)	333 µW/cm³ (for one year)
Fuel cells (methanol)	280 µW/cm³ (for one year)

(Shad Roundy, Paul K. Wright, Jan Rabaey, Computer Communications 26 (2003) 1131-1144)

References

- [roy1] K. Roy, S. Mukhopadhyay, H. Mahmoodi-Meimand, Leakage Current Mechanisms and Leakage Reduction Techniques in Deep-Submicrometer CMOS Circuits, Proceedings of IEEE, VOL. 91, NO. 2, February 2003.
- [fah1] A. Fahim, Low-leakage current, low-area voltage regulator for system-on-a-chip processors, Electronics Letters, Vol. 41, No. 19, 15th September 2005.
- [raz1] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, New York, 2001.
- [lim1] Y.H. Lim and D.C. Hamill, Simple maximum power point tracker for photovoltaic arrays, Electronics Letters, Vol. 36, No. 11, May 2000.
- [esr1] T. Esram, J.W. Kimball, P.T. Krein, P.L. Chapman and P. Midya, Dynamic Maximum Power Point Tracking of Photovoltaic Arrays Using Ripple Correlation Control, IEEE Transactions on Power Electronics, Vol. 21, No. 5, September 2006, pp 1282-1290.
- [esr2] T. Esram and P.L. Chapman, Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques, IEEE Transactions on Energy Conversion, Vol. 22, No. 2, June 2007, pp 439-449.
- [Nag1] H. Nagayoshi, T. Kajikawa, Mismatch Power Loss on Thermoelectric Generators Systems Using Maximum Power Point Trackers, 2006 International Conference on Thermoelectrics.
- [rou1] Shad Roundy, Energy Scavenging for Wireless Sensor Nodes with a Focus on Vibration to Electricity Conversion, dissertation in the University of California, Berkeley, Spring 2003.