

GaN discrete devices for portable and computing applications

Jan Sonsky

Thomas Zhao, and Felix Wang

jansonsky@innoscience.com

- LV GaN: Markets, requirements and value proposition
- Innoscience introduction
- Our LV technology and differentiators
- Manufacturing data
- Application examples and benefits
- Concluding remarks

GaN in Power supply – dominated by fast chargers today

650V GaN devices inside

Source: Yole report, "GaN Power 2021: Epitaxy, Devices, Applications and Technology Trends"

with Innoscience

650V and **150V GaN** devices inside

July'22

SemiconductorTODAY

"By using all GaN FET technology, each charger in **Anker's** new series is powered by two **Innoscience GaN** power chips on both the **AC** side and **DC** side (an all-GaN solution)"

Power supply Servers – big opportunity for LV GaN

82 pcs of LV Devices (1-4mOhm)

Power supply computing/mobile – LV GaN opportunity

10+ pcs of LV Devices (<4mOhm)

- Footprint
- Lower Ron
- Less self-heating

- Footprint
- Efficiency at higher freq.
- Less self-heating

- Footprint
- Higher efficiency
- Higher power density

How to capitalize on the big opportunity in LV GaN?

- Power supply market is a great business opportunity for low voltage GaN
- The key enablers for GaN to enter and replace Si-MOS in low voltage
 - Performance optimized 30V, 40V and up to 100V devices
 - Breakthrough in reducing of IGSS and IDSS leakage
 - Innovative device concepts (bi-directional switches)
 - Cost effective manufacturing
 - High volume capacity and fast ramp-up support
 - High yield and low PPM
 - Reliability and application support

Innoscience introduction

World's Leading GaN Manufacturer and Solution Provider

Founded

Dec. 2015

Employees

1600+

Global Patents

700+

Products

30V-700V GaN Devices

Wafer

Drivers

Innoscience – Major Milestones

Innoscience manufacturing prowess

- 8-inch production fabs with high-throughput modern manufacturing tools
- Our GaN wafer capacity exceeds the rest of the world combined supply

Superior cost productivity due to 8-inch vs. competition using 6-inch wafers

LV/MV GaN Technology Roadmap by Innoscience

Production

Pre-release

Innoscience vs. competitors in 40V range

- 40V Gen1 was a market introduction product
- 40V Gen2 is a best-in-class product
 - Leading our competitors in key performance figures
 - **Zero dynamic Ron** increase including under hard-switching conditions
 - Low ldss and lgss enable to enter mobile markets and direct-battery-connected applications

Examples of technology differentiations by Innoscience

- Superior dynamic Ron capability (including hard-switching) due to specially developed strain layer in combination with proprietary epitaxy
- Best-in-class gate leakage current due to gate module process
- Novel bi-directional device concept 1st time right and 1st on market

Example: Gate leakage breakthrough on E-mode GaN

p-GaN HEMT Gate structure (Back-to-back diodes in series) Gate Metal p-GaN for E-mode AlGaN Barrier 2DEG GaN Channel Layer

- Innoscience reduced the gate leakage by proprietary GaN epitaxial and process technology co-optimization
- Nearly 10x reduction of gate leakage, achieving <3 μA at 85 °C over the device lifetime making it suitable as a load switch inside smartphone

Technology maturity – volume production data

40V InnoGaN Gen1 → 90.7% average CP yield

40V BiGaN Gen2.5 → 90.9% average CP yield

Epitaxy manufacturing control

• The control of AlGaN barrier determines uniformity of Ron, VT and other key device parameters

3.05 -

0-92 mm range	Gen2 EPI
AlGaN thickness	1 nm
AI%	< 1.0 %

1.7 - 1.65 - 1.6 - 1.55 - 1.5 - 1.45 - 1.45 - 1.45 -	2.959 - 2.85 - 2.755 - 2.65 - 2.65 - 2.55 -
1.35 - 1.31 - 1.25 - 1.25 - 1.31 - 1.25 - 1.31 - 1.25 - 1.31 - 1.25 - 1.31 - 1.25 - 1.31 - 1.	2.5 –
1.2 - 1.15 -	2.45 - 2.4 - 2.35 - 2.25 - 2.1
1.1 1.05	2,2 - 2,15 - 2,1 -
1 - 0.95 -	2.1 - 2.05 - 2 - 1.95 -

0-92 mm range	Gen2 EPI	
VT	± 0.15 V	
Ron	± 0.2 mOhm	

Manufacturing maturity – baseline & process corners

Tested: 1700 devices per wafer

Switching parameters – baseline & process corners

Dynamic Ron – hard switching conditions

Tested: 1700 devices per wafer

Wafer location: 0-50mm

Wafer location: 90-92 mm

Accelerated Vds=56V

	40V Gen1, INN040LA015A
Qualification voltage (JEDEC, standard)	32V
Rated voltage	40V
Dynamic Ron guaranteed	40V
Repetitive unclamped inductive switching	58V (fail at surge Vds >96V)
Min guaranteed DC BVdss	60V
Typical DC BVdss 25C / 150C	72V / 69V

First GaN device inside the Smartphone (40V Bi-GaN)

The World's 1st BiGaN in Mass Production

INN040W048A is Bi-directional switch as OVP (Over Voltage Protection) application in Tier1 Smartphone OEMs to help reduce heat and size

Parameters	Silicon solution	GaN competitor	INN040W048A
V _{DS} (V)	40V	40V	40V
# of Devices	2pcs	2pcs	1pc
Devices size	2*2mm*3mm	2*2.5mm*1.5mm	1*2.1mm*2.1mm
Gate Leakage (85C, max)	<0.1uA	<800uA (Too high to use)	<3uA (meets customer request)
On Resistance(typ.)	11mΩ	6mΩ	4mΩ
Cell-phone case Temp. Rise	~2° C	~1.1° C	~0.5° C

40V BiGaN reliability ready for smartphone era

10ppm failure rate exceeds 20years at the forward gate voltage of 5.0 V ($V_{\rm GD}$) and 125 °C.

10ppm failure rate exceeds 10,000 years at the operating voltage of 32 V (V_{DD}) and 125 $^{\circ}C$

40V InnoGaN on Buck-Boost Applications (notebook)

40V InnoGaN solution is 60% smaller than Si and 1.1% more efficient

FETs	Size	Total Size
Silicon	5*6mm *4PCS	120 mm²
GaN	3*4mm *4PCS	48 mm²

Next Gen Compute Platform Powered by Innoscience

BiGaNTM vs B2B MOSFETs

70% smaller solution size

50% lower on resistance*

40% lower temperature rise*

InnoGaNTM vs Silicon

2x F_{SW} without impacting efficiency*

30% lower operating temperature*

75% smaller solution size

GaN copak vs DrMOS

1% higher efficiency

46% higher power density

36%+ smaller solution size

Concluding remarks

- Innoscience offers unique combination of GaN technology, manufacturing, and best-in-class products
- Great position to unlock the vast potential of LV GaN in power supplies
- Manufacturing capacity with high yield & low ppm levels at low-cost enables entry to smartphones or other very high-volume markets

