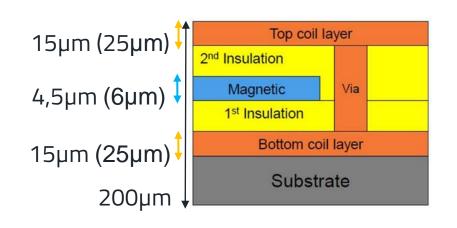


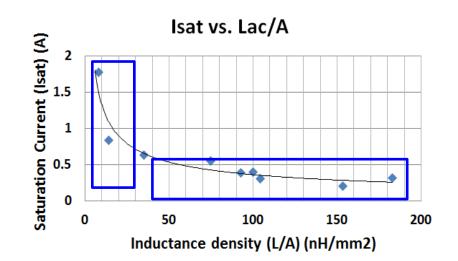
MINIATURE HIGH FREQUENCY AUXILIARY DC-DC CONVERTER BASED ON AN IMPROVED THIN-FILM MICROINDUCTOR

Martin Sittner

WURTH ELEKTRONIK MORE THAN YOU EXPECT

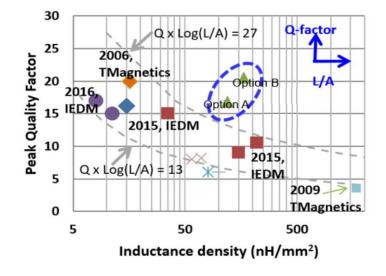
- Technology Introduction
- Packaging & Integration Options
- Design Overview
- Stack Comparison
- Prototype
- Reliability
- Outlook & Conclusion

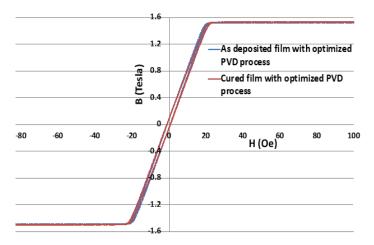




TECHNOLOGY INTRODUCTION

- Thin-film magnetics technology based on silicon substrate for high volume manufacturing on 300mm (12") wafers
- Ultra thin profile height ~200µm

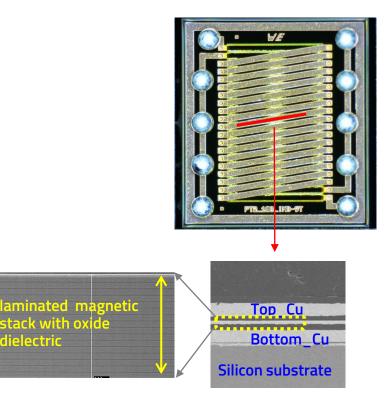




TECHNOLOGY INTRODUCTION

- Characteristics based on 4,5µm core/ 15µm Cu
 - > Large inductance density
 - High Q-factor

BH loop of optimized high-frequency magnetic core

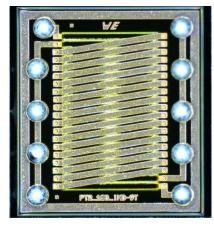

- Ms:1.3T~1.4T (VSM)
- Hc: 0.1~0.5 Oe
- Hk (HA): 20~60 Oe

TECHNOLOGY INTRODUCTION

- Magnetics on Silicon technology:
 - > CZT magnetic material for magnetic core
 - Laminated 4,5µm / 6µm thick magnetic core
 - 15µm / 25µm thick electroplated copper for coil layers
- Polyimide material as insulation between core and Cu layers

TECHNOLOGY SPECS

- Microtransformer specification range:
 - Inductance range: 5 500nH
 - Q-factor > 12 at 10-50MHz
 - L/Rdc >200nH/Ω
 - Isolation voltage up to 3kV
 - Coupling coefficient up to 0.95
- Microinductor specification range:
 - Inductance range: 5 500nH
 - Inductance density up to 300nH/mm²
 - Q-factor 15...20 at 10-50MHz
 - \succ L/Rdc > 400nH/ Ω
 - Saturation current 0.2A ~ 2A
 - Inductance tolerance: ±10%

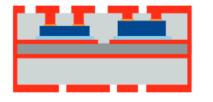

Microinductor

TECHNOLOGY LIMITATIONS

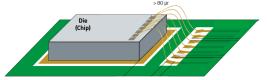
Parameter Microinductor		Microtransformer			
Inductance	nH range (no economic use case with L in μ H range)				
Operation current	< 3A (due to RDC)				
Frequency	Below 1GHz (high power losses in silicon substrate above 1GHz)				

Microtransformer (2.6mm x 2.4mm)

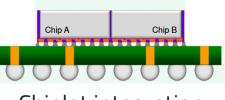
Microinductor



WLCSP


PACKAGING AND INTEGRATION OPTIONS

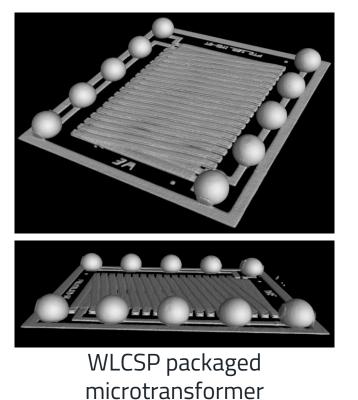
Integration options


WLCSP for PCB soldering and package-in-package integration

Bare die for embedding

Bare die for wire bonding interconnects

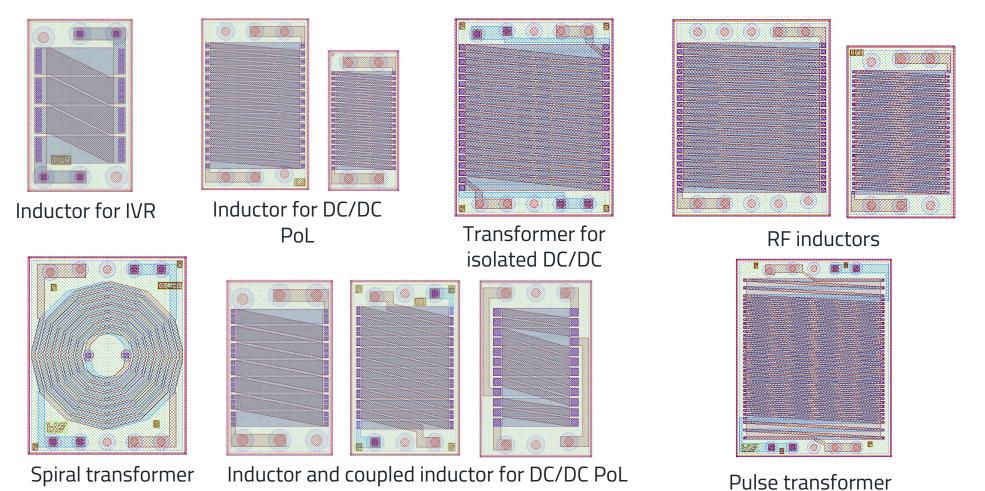
Chiplet integration



PACKAGING AND INTEGRATION OPTIONS

WLSCP

- chip height ~ 200µm
- Ball diameter 225µm
- Device height soldered on PCB ~300µm
- Smaller ball diameters possible

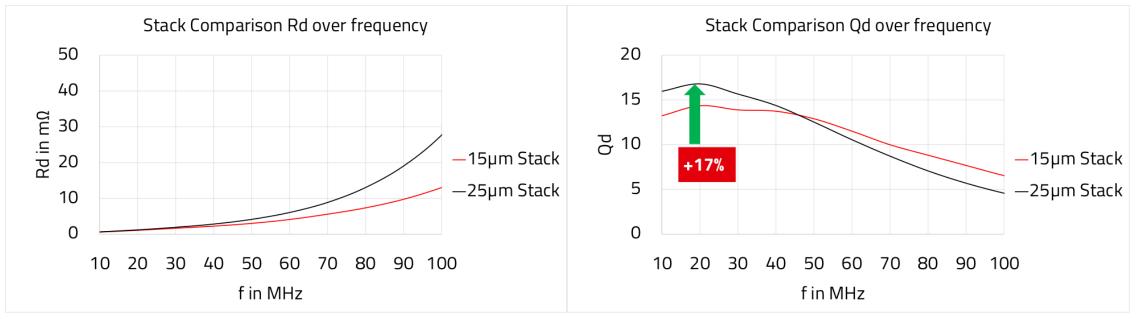


OVERVIEW OF ONGOING DESIGNS



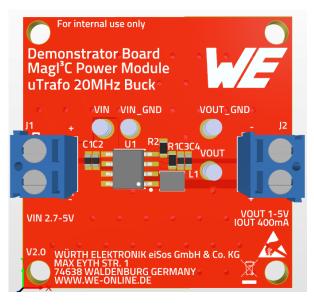
10 MINIATURE HIGH FREQUENCY AUXILIARY DC-DC CONVERTER BASED ON AN IMPROVED THIN-FILM MICROINDUCTOR MARTIN SITTNER | PWRSOC 2023 | 29.09.2023

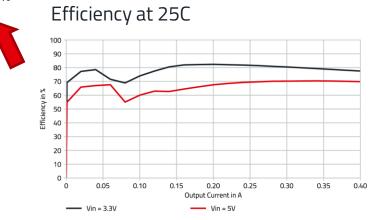
STACK COMPARISON - INDUCTANCE



- Up to 30% inductance improvement for an unbiased frequency
- Up to 18% saturation current improvement for DC-biased test with single frequency (f = 30MHz)

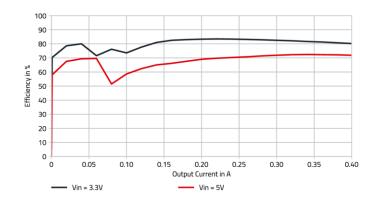
STACK COMPARISON – RESISTANCE / Q FACTOR




- Nearly no difference for Rd in region of interest for power applications (10 50 MHz)
- Major differences can be found looking at RDC
 - RDC of the 25µm stack decreased by 45%
 - > RDC reduction matches Cu thickness increase of 40%
- Qd is increased up to 17% in region of interest for power applications

PROTOTYPE AUXILIARY SUPPLY FOR POWER SIP / POWER SOC

Peak Efficiency at 3.3V to 2.5V >82%


360nH

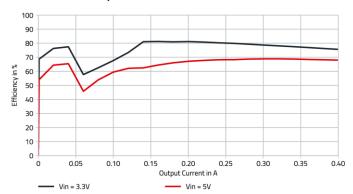
1.65 Ω

450 mA

3.2 x 2.5

Efficiency at -40C

Converter specifications:

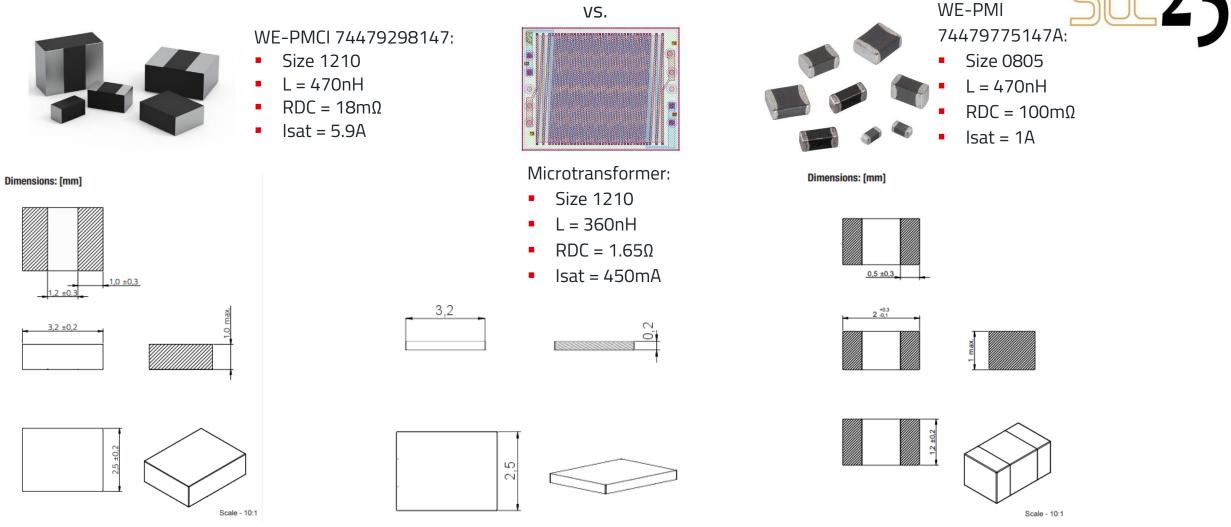

- VIN 2.7V 5V
- VOUT 1V 5V
- IOUT up to 400mA
- fsw 20MHz

Microtransformer specifications Value **Parameters** Rdc Q-factor 21.4 at 20MHz

Isat

Chip Size

Efficiency at 85C

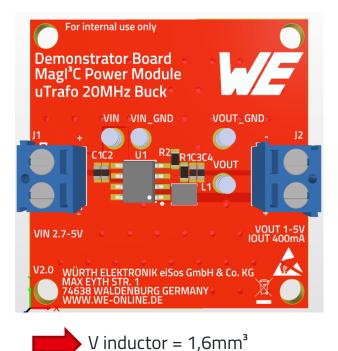


Chip size 1210

PROTOTYPE COMPARISON TO DIFFERENT MAGNETIC COMPONENTS

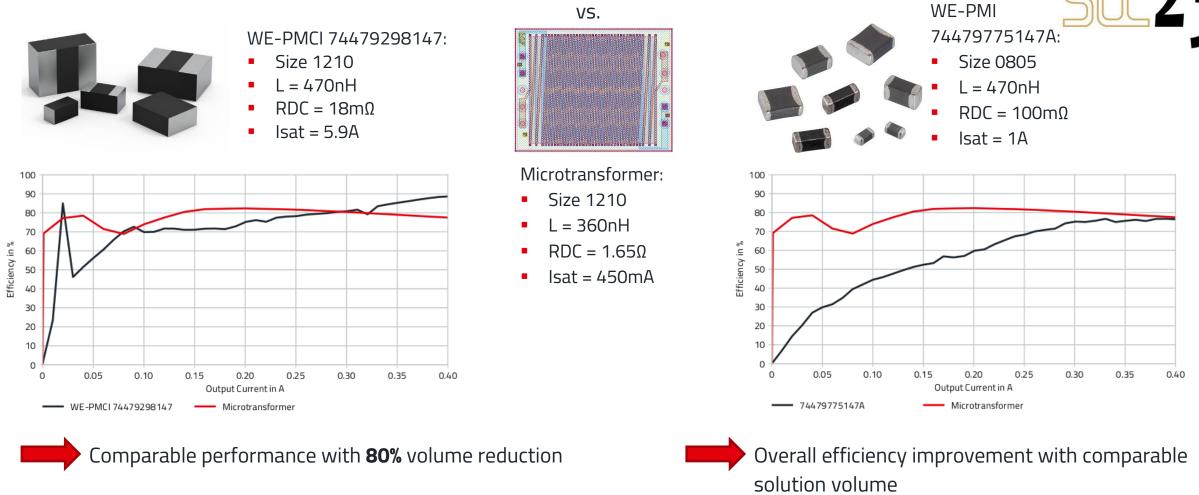
PWR

PROTOTYPE COMPARISON TO DIFFERENT MAGNETIC COMPONENTS



Prototype with WE-PMCI 74479298147:

Prototype with Microtransformer:



Prototype with WE-PMI 74479775147A:

PROTOTYPE COMPARISON TO DIFFERENT MAGNETIC COMPONENTS

PWR

RELIABILITY

- Reliability proven by AEC-Q200 grade 1 qualification for 15µm Cu/ 4.5µm core stack
- 16 items with total sample count of 685 each one inductor and one transformer
- Temp. range from -40°C to 125°C

	w/E	Qualific	ation AEC-Q	200 REV D Table5 Test Overvie	w			
Product Series		WE-MINT (Magnetic Integrated Nano Transformer) WE-MINI (Magnetic Integrated Nano Inductor)						
			Acce	eptance Criteria				
	#1	No physical d		roperty (Ls, RDC) meets datasheet both premeasurement a	and			
	#2	Inspect device construction, marking and workmanship. Electrical test not required.						
	#3	#3 Electrical test not required. Dimension meets datasheet.						
	#4	#4 Marking must remain legible.						
	#5	#5 Acceptability of Electronic Assemblies IPC-A-610 class 3.						
	#6	Push off sam	ple from PCB and force	needs to be recorded.				
No.	Test item	Sample Size	Reference	Test conditions	Acceptance Criteria			
3	High Temperature Exposure	77	MIL-STD-202-108	125°C , 1000h	#1			
4	Temperature Cycling	77	JESD22 Method JA-104	-40°C.(30min)~ 125°C.(30min), Transfer time max. 1min., 1000 cycles	#1			
7	Biased Humidity	77	MIL-STD-202-103	85°C, 85%RH, 1000h	#1			
8	Operational Life	77	MIL-PRF-27	85°C. – 40°C Temperature rise, 1000h, rated current from the datasheet	#1			
9	External Visual	30	MIL-STD-883-2009	N/A	#2			

10	Physical Dimension	30	JESD22 Method JB-100	N/A		#3
	Resistance to Solvents	5	MIL-STD-202-215	Solvent 1: Immersion for 3+0.5, -0 minutes @ 25±5°C,brush 10 strokes (wet bristle),hand pressure 2~3 ounce for 3 cycles with air-blown dry		
12		5		Solvent 3: Immersion for 3+0.5, -0 minutes @ 25±5°C, brush 10 strokes (wet bristle), hand pressure 2-3 ounce for 3 cycles with rinse in approximately 25°C water and air-blown dry		#4
		5		Solvent 4: Immersion for 3+0.5, -0 minutes @ 63°C~70°C,brush 10 strokes (wet bristle),hand pressure 2~3 ounce for 3 cycles with rinse in approximately 25°C water and air-blown dry		
13	Mechanical Shock	30	MIL-STD-202-213	3 shocks in each direction(x, -x, y, -y, z, -z) , peak value 100g's, duration 6ms, half-sine, velocity change 12.3ft/sec.		#1
14	Vibration	30	MIL-STD-202-204	10g's for 20min, 12cycles each of 3 orientations, test from15~2000HZ		#1
15	Resistance to Soldering Heat	30	J-STD-020	Tp, tp=30~35s, 3 times reflow		#1
17	ESD	15	AEC-Q200-002 or ISO/DIS10605	Test Environmen Size Micro Ind Micro Trafo	nt: 22°C ± 5°C, Humidity: 30% ~ 60% Component Classification 2 (200V DC to <4000V DC) 2 (200V DC to <4000V DC)	#1
18	Solderability(SMD)	30	IPC-A-610	Steam Aging 8 hrs±15min @93°C, Tc=240~245°C,tp=20~30s.		#5
19	Electrical Characterization	30	User Spec.	measure electrical property@ 20°C, 125°C, -40°C		#1
21	Board Flex	30	AEC-Q200-005	bending 2mm (Min), 60(+5) sec		#1
22	Terminal Strength(SMD)	30	AEC-Q200-006	Product Type Micro Ind Micro Trafo	Push Off Force(N) 17,7N 17,7N	#6
*N/A	Low Temperature Storage Life	77	JESD22-A119	-40°C., 1000h		#1

OUTLOOK & CONCLUSION

SUC23

- Thicker stack shows improvements in terms of Ld, RDC and Isat
 - > Approval for thicker stack for power applications
- Technology's high frequency capability could be verified
- Finish of reliability trials for both stacks (target: AEC-Q200 grade 0 with temp. range -50°C 150°C)
- Power loss modelling including silicon substrate losses
- Increase of isolation voltage to 5kV
- Research for different design approaches to further improve FOM
 - 🕨 L vs A
 - R vs A
 - Isat
 - > Q-factor

