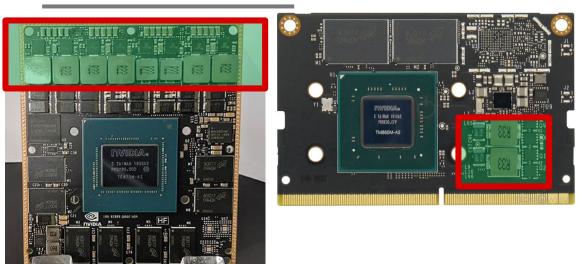
NEW ARCHITECTURE FOR FULLY INTEGRATED GRANULAR POWER SUPPLIES

SANTOSH KULKARNI RENESAS ELECTRONICS CORPORATION

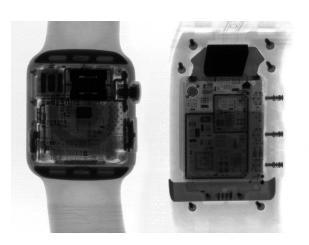
Introduction

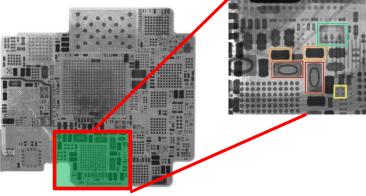
Microprocessor Power Supply- Challenges

Integrated Voltage Regulator (IVR)-Background


New Architecture for IVR-Fully integrated solution

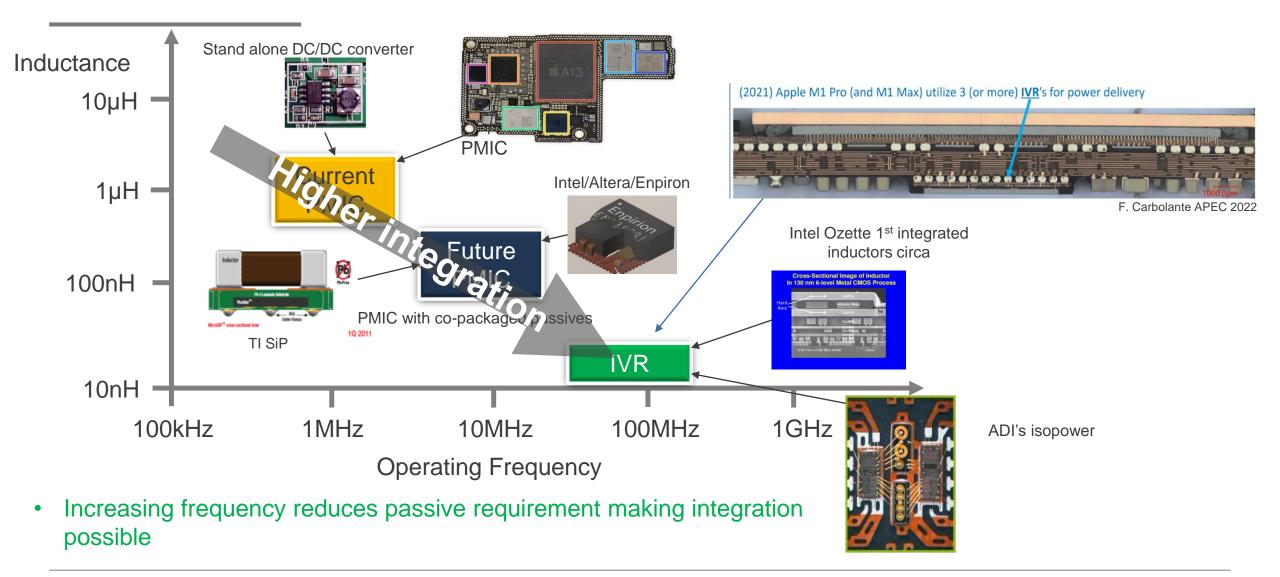
New IVR architecture- discussion & results


Key Challenges & Summary

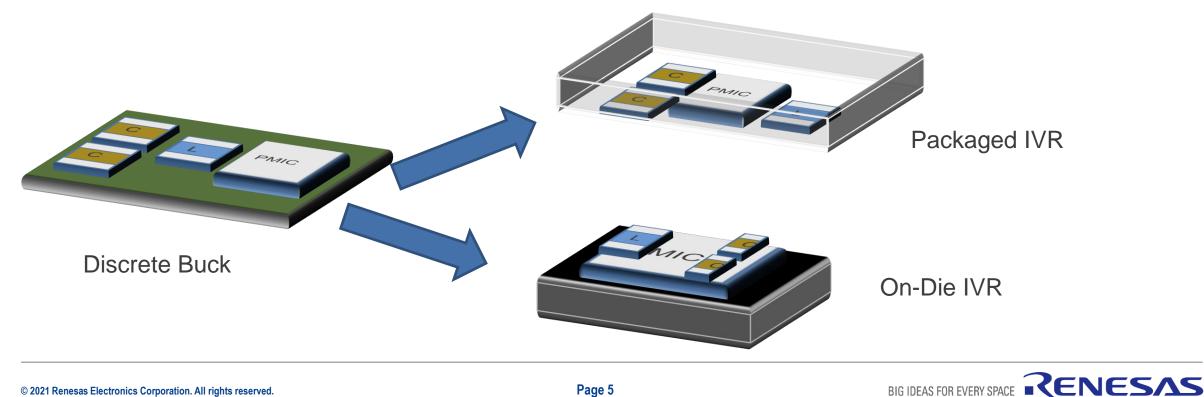


POWER DELIVERY CHALLENGE FOR SERVERS & WEARABLES*

- Power Management takes upto 20% of board area
- Power supplies use discrete switches operating @ <1MHz
- Focus on increasing frequency for smaller solution
- Granular Power with multiple integrated VRs with passives can provide improved performance
- Integration of the Power Management silicon with the processor (Vertical Power); enables better dynamic control of SoC behaviour through DVFS techniques



- Power Management takes upto 20% of board area
- Performance relies on availability of smaller and low profile passives
- Increasing power requirement of SoCs
- Integrated VRs with passives can provide improved performance

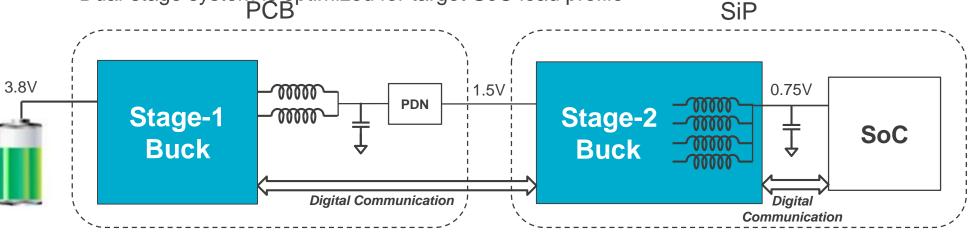

REDUCING THE AREA FOR POWER CONVERSION

BIG IDEAS FOR EVERY SPACE **RENESAS**

INTEGRATED VOLTAGE REGULATOR

- IVR is a highly miniaturized, integrated power management device
- IVR offers high performance, efficiency, size & cost benefits to power hungry highly integrated electronics applications ٠
- IVR integrates switches, control, drivers, external components on a single platform (package or on-die) •
- IVR can be integrated directly with application within the same package or on the same die

BIG IDEAS FOR EVERY SPACE


TYPICAL SPECIFICATIONS FOR MICROPROCESSOR POWER DELIVERY

- Input Voltage- 5V-2.5V (3.8V –typical)
- Output Voltage- 1.2V-0.5V (0.8V typical)
- Output current- 8A (2A/phase)- 4 phases
- Solution height- 0.3mm (for integration with processor)
- Integration technology- Co-package with SoC
- Inductor- <20nH (Package inductors)
- Capacitor- 1uF (Package capacitors)

DUAL STAGE BUCK ARCHITECTURE

Dual-stage buck system

- Stage-1 pre-regulator typically remains with main system PMIC
- Stage-2 high-frequency buck is in-package with SoC
- Dual-stage system is optimized for target SoC load profile

- Target fsw < 5MHz
- Target efficiency ~93% @ 2:1 voltage ratio
- Low accuracy, high efficiency, low bandwidth, low power modes
- External magnetics

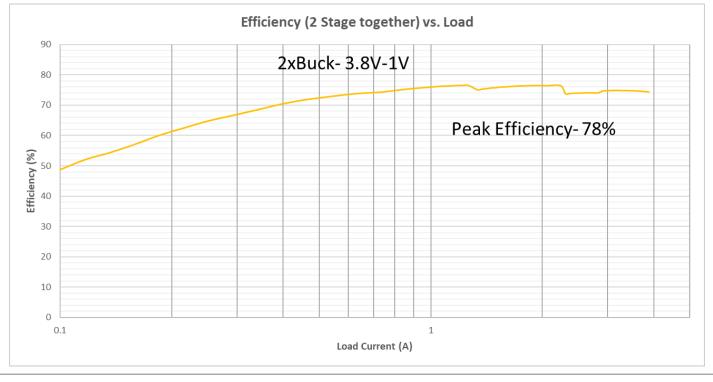
Target efficiency ~85% @ 2:1 voltage ratio

High accuracy, high efficiency, wide bandwidth, droop mitigation

On-die/in-package magnetics

Target fsw > 50MHz

BENEFITS OF DUAL-STAGE SYSTEM


- 1. Wide bandwidth buck converter (stage-2 regulator)
- Very effective at eliminating 2nd and 3rd droop
- Limited effect on 1st droop due to bandwidth limitations
- 2. Large on-die decoupling capacitors
- Very effective at reducing 1st droop
- Tends to be very area intensive (even with 20fF/µm MiM capacitors).
- 3. SoC clock stretching in response to voltage droop
- Requires close interaction between PMIC and SoC to detect and respond to droop
- Careful balance between too much and not enough clock stretching
- 4. Parallel high-speed OTA
- Behaves as a closed-loop wide bandwidth parallel current source
- Low efficiency, but only triggered under droop conditions
- 5. Non-linear droop response
- Synchronous non-linear phase alignment on droop detection
- Use of fast triggers and high-speed comparators
- Non-linear response to droop conditions is effective but difficult to control

TWO STAGE BUCK CONVERTER*

• Two stage solution with standard buck as 1st stage and IVR as 2nd stage

*PwrSoC 2021

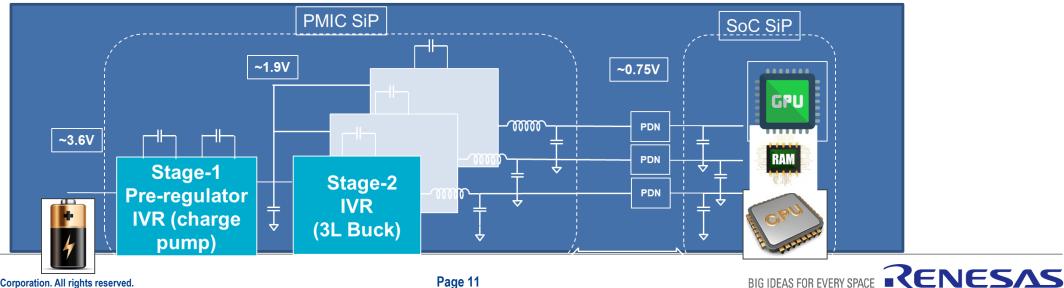
- Standard buck +IVR architecture to improve efficiency by reducing the voltage swing across the inductor
- 1st buck uses ferrite inductor (470nH) & PMIC sits outside the package; 2nd stage uses package inductors & sits within the same package as SoC

SUMMARY OF DIFFERENT ARCHITECTURE OPTIONS*

Five main PMIC architecture options for microprocessor power supply

- 1. 1xBuck: single stage 3.6V to 0.8V direct conversion
- 2. 2x Buck: 1st stage from 3.6V to 1.5V, 2nd stage from 1.5V to 0.8V
- 3. CP + Buck: unregulated 1st stage charge-pump from 3.6V to ~1.8V, 2nd stage from 1.8V to 0.8V
- 4. CP+CP+LDO: unregulated 1st stage charge pump from 3.6V to ~1.8V, 2nd stage from 1.8V to ~0.9V; LDO from 0.9V to 0.8V
- 5. MLC: single stage regulation from 3.6V to 0.8V

Parameters	1x Buck	2x Buck	CP+Buck	CP+CP+LDO	MLC
Peak efficiency	70%	70%	70%	85%	88%
Package size (approx.)	Y mm ²	0.8Y mm ²	1.5Y mm ²	2Y mm ²	1.5Ymm ²
Comments	Poor peak eff. & moderate cost increase	Smaller solution & improved efficiency	Good efficiency & moderate cost increase	Good efficiency & small cost increase	Excellent efficiency & highest cost


• Key Challenge- Architecture for higher efficiency in smaller footprint?

RENESAS

BIG IDEAS FOR EVERY SPA

NEW ARCHITECTURE FOR FULL INTEGRATION OF POWER SUPPLIES

- Motivation is to fully integrate both the stages of VR
- A first-stage unregulated divide-by-two charge pump is implemented to step from 5V USB to a 2.5V intermediate voltage
- The intermediate voltage will be supplied to a MLC for final stage regulation
- Within the MLC each transistor sees a maximum of half the supply voltage, so 1.25V in this case
- This allows the MLC to be completely implemented in 1.5V transistors, allowing fast switching up to 100MHz
- This reduces the passive requirements to ~10-20nH; allowing the use of smaller components

MLIVR- MULTI-LEVEL IVR (CHARGE PUMP + MULTI-LEVEL CONVERTER)

NEW ARCHITECTURE - IMPLEMENTATION DISCUSSION

- For initial calculations the following has been assumed:
- 10nH, 5nH package inductors considered
- Target switching frequency for charge pump- 2MHz
- Target switching frequency for MLC 20MHz
- Charge-pump designed with 5V switches (PMOS on input switch, all others NMOS)
- MLC designed with all 1.5V switches (all NMOS)
- MLC gate voltages provided without boot-strapping, using LDOs from 2.5V intermediate, or 5V supply voltages

IMPLEMENTATION DISCUSSION- AREA ESTIMATE (ONLY PASS DEVICES)

Compare IVR (CP+MLC) area with standard single phase buck

Assumption- controller area will remain similar & only pass devices considered for comparison

Pass device area estimate- 5V-1V-8A (2x4A phases)

Area for Pass devices (1-PMOS + 1- NMOS) - 1.8mm2

Area estimate for IVR

- CP area estimate-(1-PMOS & 3-NMOS) (5V devices)
 - Area- 0.97mm2
- MLC area estimate- 4-NMOS (1.5V devices)
 - Area- 0.16mm2
- Total Area for 4 phases- 0.97mm2+4x0.16mm2-1.6mm2
- IVR area estimate (pass devices) is ~12% smaller than Single phase buck

BILL OF MATERIALS (BOM) COMPARISON WITH BUCK

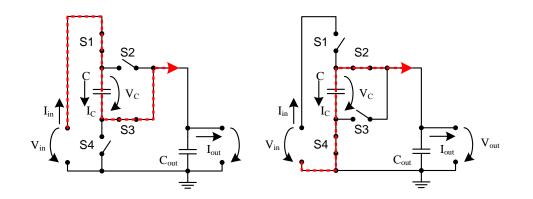
CP+MLC-BOM

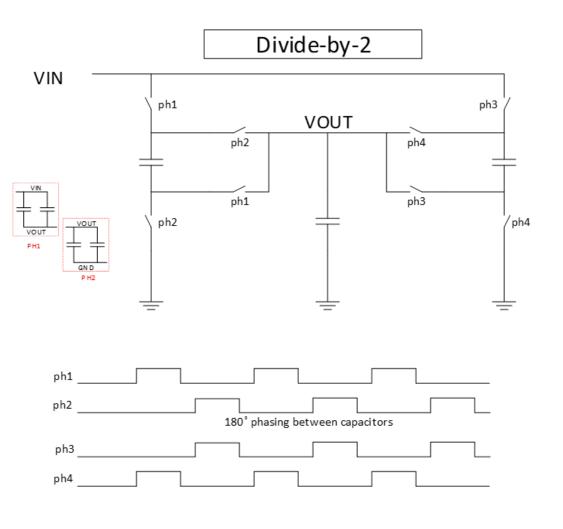
Component Type	Package	number	Component area (mm2)
Inductor - 10nH	0402	4	2.00
Capacitor (MLC)-O/P- 2.2uF	0201	4	0.72
Capacitor (MLC/CP)-I/P- 2.2uF	0201	5	0.90
Capacitor (flying cap)-MLC- 1uF	0201	4	0.72
Capacitor (flying cap)-CP- 0.5uF	0201	1	0.18
Total component and Layo	18	4.52	

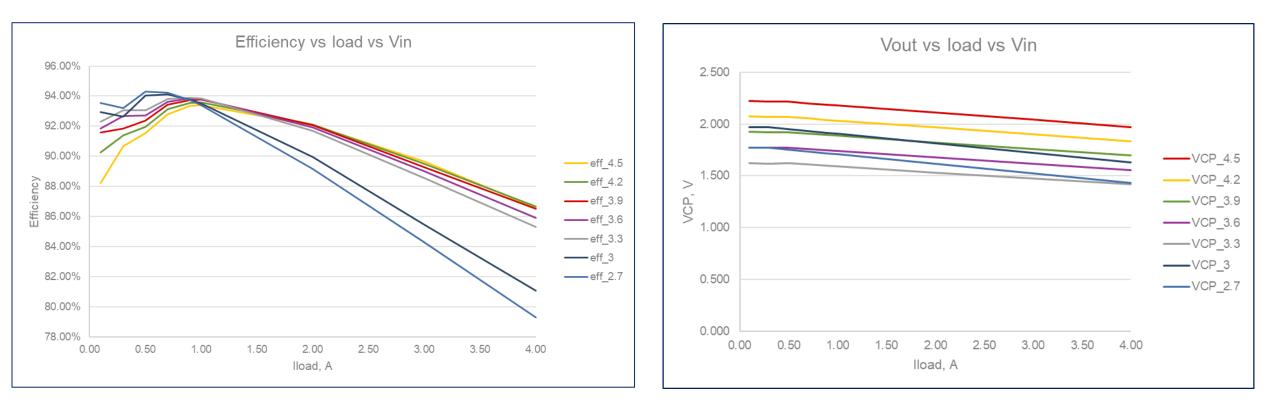
Buck-BOM

Component Type	Package	number	Component area (mm2)
Inductor- 0.47uH	2012	2	4.8
Capacitor (Buck)-O/P- 22uF	0402	2	1
Capacitor (Buck)-I/P- 22uF	0402	1	0.5
Total component and	I Layout Area	5	6.3 mm²

There is a potential reduction of <u>~40%</u> in BOM for MLIVR


CHARGE PUMP



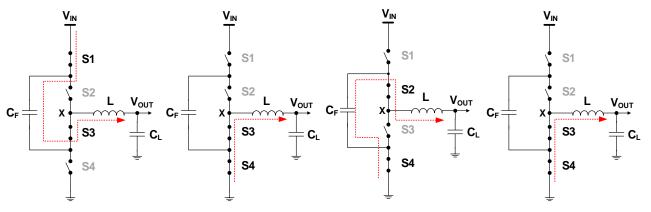

CHARGE PUMP

- 4-switch topology with a flying cap
- 5 V to 2.7 V input voltage
- Clock phasing to provide $V_{OUT} = V_{IN}/2$
- 4 A total output current
- CP operating at its natural division gives the highest efficiency
- Fly cap- 1uF
- Output resistance set by topology, Rson, Cfly and Fsw

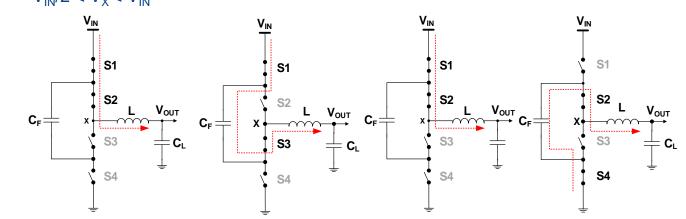
CHARGE PUMP- SIMULATED PERFORMANCE

- Peak efficiency of 94%
- Vout stays between 2.2V and 1.4V for Vin between 4.5V and 2.7V

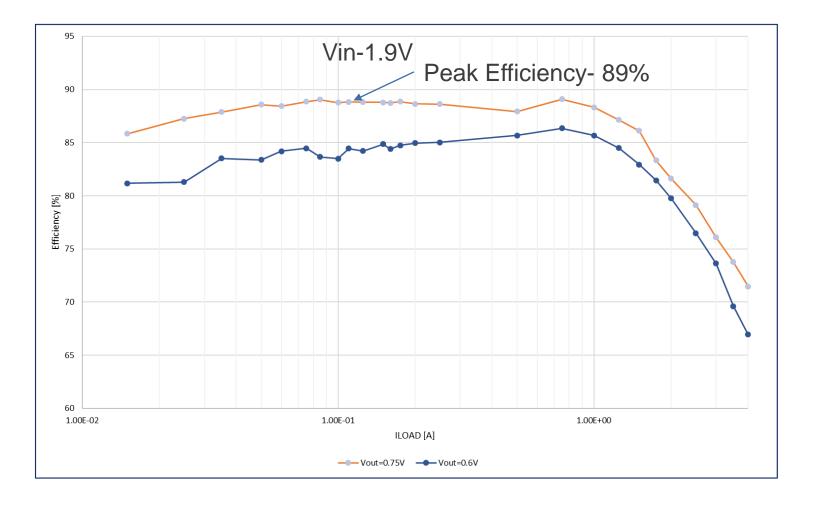
BUCK IPs MULTI LEVEL CONVERTER


MLC BUCK 3-LEVEL (V_{IN}, 0.5V_{IN}, 0) CONVERTER OPERATION

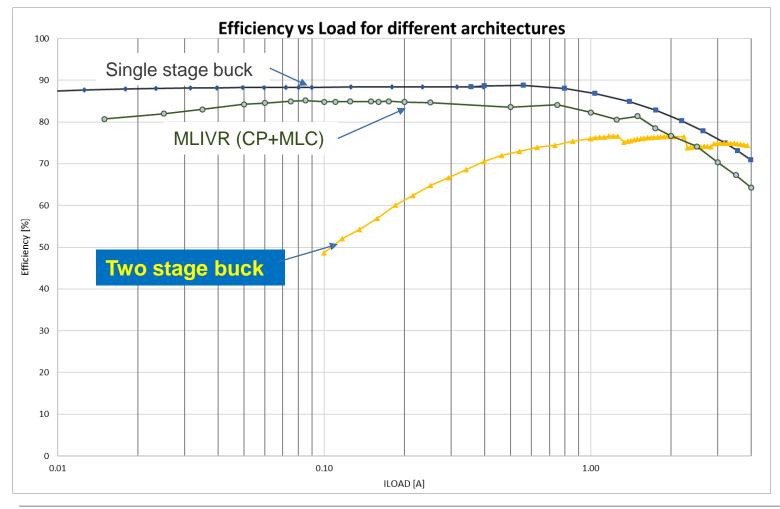
- In this type of converter a flying cap is used to provide an internal rail at half-supply level
- The switching voltage signal (LX) switches between GND and Vdd/2 or between Vdd/2 and Vdd.
- During each period inductor is magnetized twice → twice effective frequency
 - reduced current ripple for same inductor
 - reduced switching losses because of smaller voltage swing of LX node
- Lower voltage ($V_{IN}/2$) rating for power FETs
 - Reduced FET specific resistance Rsp
 - Reduced FET parasitic gate capacitance
- Scaling in pass device sizes with advanced process nodes
- A maximum intermediate voltage of between 2.4V and 3.6V can be tolerated (process dependent), allow higher efficiency on first and second stage
- Switching frequency 20MHz, discrete inductor 10nH


 $0 < V_{OUT} < V_{IN}/2$

 $V_{CF} = V_{IN}/2$ (regulated)


 $0 < V_X < V_{IN}/2$

- V_{IN}/2 < V_{OUT} < V_{IN}
 V_{CF} = V_{IN}/2 (regulated)
- $V_{IN}/2 < V_X < V_{IN}$


MULTI-LEVEL CONVERTER BUCK EFFICIENCY- SIMULATION

SIMULATION RESULT- COMPARING WITH EXISTING BUCKS

Compare IVR to buck in PWM with different pass device area for MLC & CP

- Single stage buck- **470nH**
- Two stage buck- pre-reg-470nH, IVR-5nH
- MLIVR- 10nH

Peak Efficiency

- Single stage buck- 88%
- Two stage buck- 78%
- <u>MLIVR- 85%</u>

- New Architecture for fully integrated Power Management IC (Pre-reg + IVR)
 - Slow Charge pump as pre-reg
 - Design with 1-PMOS and 3-NMOS
 - Fast Multi-level Converter as IVR
 - Design with 4-NMOS (key to smaller area)
- MLIVR architecture provides smaller PMIC size and BOM for a fully integrated IVR solution
- MLIVR architecture also benefits from device scaling with process technology; as the IVR solution uses core devices
- Efficiency higher than alternate two stage solutions
- Measurements in progress & hope to share results soon

