PwrSoC 2023:

Current-Shared Multi-Phase FIVRs with Phase-Shedding-Optimized AC Dynamics

Prof. Hyun-Sik Kim

Circuit Design Research Lab. School of Electrical Engineering KAIST, Daejeon, Korea

Outline

□ Introduction to Multiphase FIVR (MP-FIVR)

Current-Shared 400MHz/phase 6-Phase FIVR with Bond-Wire Inductors

- Inter-Inductor Current Balancing: PVDS
- Phase-Shedding-Optimized AC Dynamics
- DLL-based MPCG for Granular Phase Count Control
- Chip Implementation and Measurement

Current-Shared 200MHz/phase 4-phase FIVR with On-Chip Spiral Inductors

- Current-Shared 2-Phase 2L1C Topology
- 4-Phase 4L2C Topology for Inter-Channel Current-Balancing
- Chip Implementation and Measurement

Summary

Advantages of Multiphase FIVR (MP-FIVR)

MP-FIVR's power delivery to large domains

- Heavier loads are efficiently covered by multiple inductors and sub-converters.
- A higher effective frequency (T_s/4) facilitates fast DVS and mitigates voltage droop.

Multiphase (4-Phase) FIVR Architecture

Recent Works related to MP-(F)IVR

Challenges in MP-FIVR: Current-Sharing Imbalance

- Inequal resistance (ΔR_{Eq})
 - Power switch R_{ON}
 - Inductor DCR

- Inductance mismatch (ΔL)
 - Closely-spaced inductors
 - On-chip inductors' PIC* effect
- **Duty skew (** ΔD)
 - \blacksquare $F_{SW} > 100MHz$
 - More sensitive to skew

Challenges in MP-FIVR: Phase-Shedding

Phase-Shedding controls the phase count for high efficiency over a wide I_{Load}

- Previous MP-IVRs (ISSCC'22, JSSC'13) support only the binary # of phases 😕
 - # of phases = 1 2 4 8 for simplicity of phase division
 - It would be better if the phase-shedding is more fine-grained (e.g., 1 − 2 − 3 − 4 − 5 −)

Challenges in MP-FIVR: AC Dynamics with Phase-Shedding

(dB)

Magnitude

-80

-120

-90

(bep)

-180

-225

-270

Phase (

Dynamics for wide range of **L/C combinations**

- For stability, "N = 1" is the worst case.
- If designing C_c based on "N = 1 (the lowest ω_0)", we can't exploit the fast-transient response of the multiphase (N > 1) IVR.
- **Phase-shedding-optimized** loop design is needed.

Outline

□ Introduction to Multiphase FIVR (MP-FIVR)

Current-Shared 400MHz/phase 6-Phase FIVR with Bond-Wire Inductors

- Inter-Inductor Current Balancing: PVDS
- Phase-Shedding-Optimized AC Dynamics
- DLL-based MPCG for Granular Phase Count Control
- Chip Implementation and Measurement
- Current-Shared 200MHz/phase 4-phase FIVR with On-Chip Spiral Inductors
 - Current-Shared 2-Phase 2L1C Topology
 - 4-Phase 4L2C Topology for Inter-Channel Current-Balancing
 - Chip Implementation and Measurement

Summary

PVDS Current-Sharing: Peak-and-Valley Differential Sensing

 \Box PVDS magnetizes L_1 and L_2 shortly with C_F for fully-differential sensing ΔI_L

- If $I_{L1} < I_{L2} \rightarrow V_{CF}$ will deviate from 0V and continuously increase ($V_{CF} > 0V$)
- If $I_{L1} > I_{L2} \rightarrow V_{CF}$ will deviate from 0V and continuously decrease ($V_{CF} < 0V$)
- If $I_{L1} = I_{L2} \rightarrow V_{CF}$ stays OV

PVDS Current-Sharing: Duty-Cycle Calibration for " $\Delta I_{L} = 0$ "

- Current-sharing procedure scenario (initially for $I_{L2} > I_{L1}$):
 - Through PVDS, V_{CF} continues to increase positively ($V_{CF} > 0$).
 - "- $G_{\rm m} \cdot V_{\rm CF}$ " is injected to offset $C_{\rm K2}$, resulting in the reduced L_2 's duty-cycle ($\Phi_{\rm P2}$).
 - As I_{L2} decreases, I_{L1} increases owing to its own regulation ($I_{Load} = I_{L1} + I_{L2}$).
 - Finally, I_{L1} and I_{L1} are equalized \bigcirc with $V_{CF} = 0$ and non-zero offset V_{K2} .

PVDS Current-Sharing: *I*_L-Balancing Process

PVDS Current-Sharing: Non-Ideal Effects of PVDS

PVDS can distort the inductor current (*I*_L) profile, influencing power conversion

- Small ΔV_{CF} is preferred to maximally resemble the normal buck (NB) mode.
- Distortion of I_L-profile during PVDS also impacts the current-sharing accuracy.
- Sampling time (T_B) = 200ps (>> controllable minimum), on-chip C_F = 4nF (reused from C_O)

Phase-Shedding: Load Current (I_{Load}) Estimation

Load current (*I*_{Load}) estimator to adjust the phase count (*N*)

- I_{Load} -estimator samples ΔV_{CF} after PDS or VDS for L_1 , and accumulates it via integrator (V_{Int}).
- $V_{\text{Int}} < V_{\text{L}}$ (lower-limit) $\rightarrow N \leftarrow N 1$; $V_{\text{Int}} > V_{\text{L}}$ (upper-limit) $\rightarrow N \leftarrow N + 1$.
- If $V_L < V_{Int} < V_H$, *N* is kept without change.
- If IDLE is disabled, I_{Load}-estimator adjusts N from 2 to 6 with an integer-step.
- Controlling *N* (phase-shedding) maximizes efficiency over a wide load range

Phase-Shedding-Optimized AC Dynamics

C_o and C_c are adjusted to fully exploit the speed benefit of the multiphase (N>1) IVR

- LUT-based C_c control $\rightarrow \omega_T \times 2.5$ improvement (for N = 6)
- LUT-based C_c control + C_o reallocation $\rightarrow \omega_T \times 14$ FASTER (for N = 6)

Phase-Shedding-Optimized AC Dynamics: Co Reallocation

On-chip *C*_o Reallocation

- At N = 1, total $C_0 = C_{OV} (2nF) + C_F (4nF)$, reducing output ripple.
- When $N \ge 2$, deliberately decreasing C_0 to achieve a far higher ω_0 . (C_F is reused to PVDS)
- $[C_0 = 6nF \text{ at } N = 1] \text{ and } [C_0 = 0.2nF \text{ at } N = 6]$ exhibit the same output ripple (30 ~ 40mV).

Phase-Shedding-Optimized AC Dynamics: Result

w/o phase-shedding optimized AC dynamics

N-Optimized Dynamics via C_o Reallocation

- LUT-based (*C*_c) compensation + variable *C*_o
- Loop bandwidth (ω_T) is 14x FASTER at N = 6.
 (while maintaining phase margin and ripple)
- Dynamic On-Chip Reallocation:
 - $N = 1 \rightarrow C_F$ works as an output capacitor
 - $N > 2 \rightarrow C_{\rm F}$ is used for PVDS operation

w/ phase-shedding optimized AC dynamics

Conventional MPCG for Phase-Shedding Control

□ Typical multi-phase clock generator (MPCG) (for **8-phase** IVR)

Composed of EIGHT 3-stage counters for $N = 2^3 \rightarrow$ easy way to divide the phase. \bigcirc

Only binary # of the active phases (e.g., N = 1 - 2 - 4 - 8 - ...).

DLL-based MPCG for Granular Phase-Shedding

DLL-based MPCG for granular phase-shedding (e.g., N = 1 - 2 - 3 - 4 - ...)

- In VCDL, time delay (d_i) between OSC_{i-1} and OSC_i: $d_i = T_S/N$ (where $T_S =$ period of OSC_{REF})
- **\sum d_i-to-V converter** sums up all delays and converts it into the DC voltage-domain V_{dSUM} : if $\sum d_i (= d_1 + d_2 + ... + d_N) = 100\%$, $V_{dSUM} = 0.5V_{DD}$.
- DLL feedback-loop controls the VCDL voltage V_{ctrl} so that $V_{dSUM} = 0.5 V_{DD}$.

DLL-based MPCG for Granular Phase-Shedding

 $d_3 d_5 d_2 d_4 d_5$

2Ts

□ Varying N (phase count) in DLL-based MPCG

- d_{M} pulses ($M \ge N + 1$) are selectively masked.
- When changing N, multi-phase clocks are immediately reorganized.
- It is also free from harmonic lock issue. 3

 d_5

2Ts

 d_3

VdSUM

 \mathbf{d}_2

d

Chip Implementation

Bond-Wire (BW) Inductors

Parameter	Value
BW diameter	25µm
BW height (at center)	100µm
BW length	1mm
DCR	90mΩ
ACR (dominant loss)	170mΩ @ 400MHz
Inductance @ 400MHz	0.93 ~ 1.07nH (15% variation)

Measured Transient Responses

DVS Response

DVS rate = 75mV/ns @ 6-phase

Load-Transient Response

Demonstrations of Current-Sharing & Phase-Shedding

Current-Sharing Effect

- Before PVDS, $\Delta I_{L} = 10$ mA under $I_{Load} = 80$ mA
- After **PVDS**, $\Delta I_{L} \leq 1$ mA (**1.25%** inaccuracy) \bigcirc

*Measured with external SMD inductors (L = 20nH)

Phase-Shedding Control

N = 3: I_{L1} = I_{L2} = I_{L3} = 40mA (total 120mA)
 N = 2: I_{L1} = I_{L2} = 60mA, I_{L3} = 0A

*Measured with external SMD inductors (L = 20nH)

Power Loss Breakdown & Efficiency

Power Conversion Efficiency

Outline

- □ Introduction to Multiphase FIVR (MP-FIVR)
- **Current-Shared 400MHz/phase 6-Phase FIVR with Bond-Wire Inductors**
 - Inter-Inductor Current Balancing: PVDS
 - Phase-Shedding-Optimized AC Dynamics
 - DLL-based MPCG for Granular Phase Count Control
 - Chip Implementation and Measurement

Current-Shared 200MHz/phase 4-phase FIVR with On-Chip Spiral Inductors

- Current-Shared 2-Phase 2L1C Topology
- 4-Phase 4L2C Topology for Inter-Channel Current-Balancing
- Chip Implementation and Measurement

Summary

Current-Shared 2-Phase 2L1C Topology

Current-Shared 2L1C Topology

- 2-phase operation: $I_{L1} = I_{L2} = I_{Load}/2$ → low conduction loss, reduced output ripple ③
- **Reduced voltage swing** at the switching node
 - $(V_{\rm X})$ as well as the bottom of $C_{\rm F}$
 - \rightarrow low dynamic loss with high $f_{\rm SW}$ & large $C_{\rm BOT}$
- Intrinsic current-sharing effect via a seriescapacitor (C_F) \bigcirc

Wide coverable VCR = (0.75 ~ 1) and (0 ~ 0.75)

Composed of 4 SWs, 2 inductors, 1 fly-capacitor

*DSD converter also uses the same resources, but it is specialized for large step-down (VCR = 0 ~ 0.25) applications

2L1C Operation for **0.5 < D < 1**

□ When 0.5 < *D* < 1, the 2L1C converter covers VCR = 0.75 ~ 1

2L1C Operation for **0** < *D* < **0.5**

Intrinsic Current-Sharing Effect via Series-Capacitor C_F

Preparing for journal publication

4L2C Topology: Inter-Channel Balancing (ICB) [1/2]

4L2C Topology: Inter-Channel Balancing (ICB) [2/2]

Chip Implementation

- Fabricated in 55-nm CMOS process, $V_{\rm IN}$ = 1.2V, $V_{\rm OUT}$ = 0.7 ~ 1V, 200MHz/phase x 2~4 phases
- Three versions: 2L1C w/ on-chip spiral inductors, 4L2C w/ external chip inductors

Design of On-Chip Spiral Inductor

Demonstration of 2L1C Current-Sharing Effect

Power Loss Breakdown & Efficiency

Outline

- □ Introduction to Multiphase FIVR (MP-FIVR)
- **Current-Shared 400MHz/phase 6-Phase FIVR with Bond-Wire Inductors**
 - Inter-Inductor Current Balancing: PVDS
 - Phase-Shedding-Optimized AC Dynamics
 - DLL-based MPCG for Granular Phase Count Control
 - Chip Implementation and Measurement
- **Current-Shared 200MHz/phase 4-phase FIVR with On-Chip Spiral Inductors**
 - Current-Shared 2-Phase 2L1C Topology
 - 4-Phase 4L2C Topology for Inter-Channel Current-Balancing
 - Chip Implementation and Measurement

Summary

Summary

- Multi-Phase FIVR could be an ideal solution for high-throughput SoC power delivery
- Technical challenges in MP-FIVR:
 - Current Imbalance due to different resistance, inductance mismatch, and duty-control skew
 - Binary number of activated phases
 - Different AC dynamics dependent of phase-shedding
- PVDS current-sharing is able to balance inductor currents w/o significant overhead
- DLL-based MPCG adjusts integer-step phase count for granular phase-shedding
 - More flattened high efficiency over a wide load range
- Phase-shedding-optimized AC loop control w/ C_o-reallocation paves a way to fully exploit the fast-transient benefit of the MP-FIVR
- □ Topological current-sharing technique: 2L1C converter
 - ICB scheme (cross-swapping the power transfer-path) can extend # of phases even in topological current-sharing solution

Thank my Ph.D. student **Jeong-Hyun Cho** for his major contributions on this talk.

□ Funding and chip fabrication (28nm) were supported by **Samsung Electronics**.

Thank You!

References

- Jeong-Hyun Cho, Dong-Kyu Kim, Hong-Hyun Bae, Yong-Jin Lee, Seok-Tae Koh, Younghwan Choo, Ji-Seon Paek, and Hyun-Sik Kim, "A Fully Integrated Multi-Phase Buck Converter with On-Chip Capacitor Dynamic Re-Allocation and Fine-Grained Phase-Shedding Techniques," IEEE J. Solid-State Circuits (JSSC), vol. 57, no. 12, pp. 3840-3852, Dec. 2022
- Jeong-Hyun Cho, Hong-Hyun Bae, Gyu-Wan Lim, Tae-Hwang Kong, Jun-Hyeok Yang, and Hyun-Sik Kim, "A Fully-Integrated 0.9W/mm² 79.1%-Efficiency 200MHz Multi-Phase Buck Converter with Flying-Capacitor-Based Inter-Inductor Current Balancing Technique," *IEEE Symp. VLSI Technology & Circuits* (VLSI-C), pp. 196-197, June 2022.
- Jeong-Hyun Cho, Dong-Kyu Kim, Hong-Hyun Bae, Yong-Jin Lee, Seok-Tae Koh, Younghwan Choo, Ji-Seon Paek, and Hyun-Sik Kim, "A 1.23W/mm² 83.7%-Efficiency 400MHz 6-Phase Fully-Integrated Buck Converter in 28nm CMOS with On-Chip Capacitor Dynamic Re-Allocation for Inter-Inductor Current Balancing and Fast DVS of 75mV/ns," *IEEE International Solid-State Circuits Conference* (ISSCC), pp. 298-299, Feb. 2022.
- C. Schaef *et al.*, "A 12 A Imax, Fully Integrated Multi-Phase Voltage Regulator with 91.5% Peak Efficiency at 1.8 to 1V, Operating at 50 MHz and Featuring a Digitally Assisted Controller with Automatic Phase Shedding and Soft Switching in 4nm Class FinFET CMOS," *IEEE International Solid-State Circuits Conference* (ISSCC), pp. 306-307, Feb. 2022.
- 5. N. Desai *et al.*, "Peak-Current-Controlled Ganged Integrated High-Frequency Buck Voltage Regulators in 22nm CMOS for Robust Cross-Tile Current Sharing," *IEEE International Solid-State Circuits Conference* (ISSCC), pp. 262-263, Feb. 2021.
- 6. N. Tang *et al.*, "Fully Integrated Switched-Inductor-Capacitor Voltage Regulator with 0.82-A/mm² Peak Current Density and 78% Peak Power Efficiency," *IEEE J. Solid-State Circuits* (JSSC), vol. 56, no. 6, pp. 1805–1815, June 2021.
- 7. A. Novello *et al.*, "A 1.25GHz Fully Integrated DC-DC Converter using Electromagnetically Coupled Class-D LC Oscillators," *IEEE International Solid-State Circuits Conference* (ISSCC), pp. 260–261, Feb. 2021.