

Philadelphia, Pennsylvania USA Oct. 24-27, 2021

MagNet:

Data-Driven Methods for Magnetic Core Loss Modeling

Diego Serrano, Haoran Li, Evan Dogariu, Shukai Wang, Minjie Chen

Princeton Power Electronics Research Lab

MOTIVATION

Mag / et hosts numerous measured data for different magnetic materials across a variety of operating conditions. data-driven supports Intended to magnetics research.

- Manufacturer information is limited.
- Analytic estimations (e.g., iGSE) have limited application scenarios.
- Machine learning can open new possibilities.

MACHINE LEARNING METHODS

A feed-forward neural network model has been built and trained based on the database. Hidden layers to optimize

- The model improves as the network size grows.
- Overcomes the limitations of traditional methods such as iGSE.

KEY CONTRIBUTIONS

Web-based data visualization tool makes the data easily accessible.

https://share.streamlit.io/minjiechen/pmagnet/main/main.py Trained and tested machine learning models for core loss prediction.

DATA ACQUISITION SYSTEM AND DATABASE

Fast, automated and accurate (enough) measurements.

Systematic and statistic error.

Detection of outlier data points.

Over 60,000 datapoints:

- Five materials so far
- **Excitation waveforms-**
- $f \in [10 \sim 500] \, \text{kHz}$
- $B \in [20 \sim 300] \text{ mT}$

- Pre-trained neural networks retrained with few datapoints of a new material. 2 103
- Comparable prediction accuracy for: training with 1000 N87 points

pre-training with 1000 N27/N49 points and retraining with 100 N87 points

N87 Flux Density [mT]

COLLABORATORS and SPONSORS

