

Philadelphia, Pennsylvania USA Oct. 24-27, 2021

All-in-One-Magnetics for Matrix Coupled PWM Power Conversion

Ping Wang, Daniel Zhou, Vincent Yang, Minjie Chen

Princeton University

Introduction

Coupled Magnetics Structures:

- Series coupled: windings of similar voltages can be coupled in series
- Parallel coupled: windings of similar currents can be coupled in parallel
- Matrix coupled: combining series and parallel couplings to miniaturize size and dc energy storage; achieving high efficiency and power density with ultra-fast transient response [1].

Current Ripple Reduction Mechanism

Magnetic Models

> Current Ripple Analysis by Superposition

Key Contributions

- Presenting an all-in-one matrix-coupled magnetic structure, achieving miniaturized magnetic size, high efficiency, high power density, and fast transient response.
- Revealing the current ripple reduction mechanism of the matrix-coupled magnetics with interleaving operation.
- Building a four-phase matrix-coupled SEPIC converter to validate the all-in-one magnetics concept

Applicable Topologies

> Matrix-Coupled SEPIC Converter

Series Coupling:

Two Inductors of each phase have identical voltage waveforms and are coupled in series

Parallel Coupling:

Inductors of multiple phases are coupled in parallel with interleaving operation

> Other Alternatives

Hardware Prototype and Experimental Results

> Hardware Prototype

Winding Pattern

> PCB Planar Magnetics

mm

Matrix Coupled Inductor

> Experimental Results

 $3.5 \text{ cm} \times 3.5 \text{ cm}$

Testing Condition:

• fsw = 806 kHz

Winding Leakage Reluctance, \mathcal{R}_{K} 40 × 10⁶ H⁻⁷

- Voltage conversion: 5 V → 3.3 V
- Output Current: 50 A

discrete L Over 1000W/in³

Over 4x size

compared to

reduction

References

- [1] C. R. Sullivan, B. A. Reese, A. L. F. Stein and P. A. Kyaw, "On Size and Magnetics: Why Small Efficient Power Inductors are Rare," International Symposium on 3D Power Electronics Integration and Manufacturing (3D-PEIM), Raleigh, NC, 2016. [2] S. Cuk, "A New Zero-Ripple Switching DC-to-DC Converter and Integrated Magnetics," TPEL, 1983.
- [3] M. Chen and C. R. Sullivan, "Unified Models for Coupled Inductors Applied to Multiphase PWM Converters," TPEL, 2021.