

Philadelphia, Pennsylvania USA Oct. 24-27, 2021

CONTEXT AND MOTIVATION

- DC-DC switching converters performance is highly dependent on passive technologies used;
- Lower frequency operation reduces switching losses, but limits power output and miniaturization in traditional passives.

Туре	Max energy [J]	Max power [W]	Power @ 100 Hz [mW]
Inductor	5.3 x 10 ⁻⁶	1.4	0.53
Capacitor	90 x 10 ⁻⁶	2.7	4.50
Battery	259 x 10 ⁻³	7.2 x 10 ⁻³	7.20

All passives have similar physical sizes for an appropriate comparison

TOPOLOGY EXAMPLE

PERSPECTIVE

As the battery operation is outside the conventional use cases (high frequency, small amount of Q transfer, many cycles), we are exploring the battery behavior under these energy demand profiles. We are also quantifying the charge-sharing and conduction losses.

Low Frequency and Low Power DC-DC **Switched Battery Converter** C. A. Berlitz^{1,2}, E. Perez¹, S. Oukassi¹, B. Allard², G. Pillonnet¹

¹ CEA-Leti, Université Grenoble Alpes, F-38000 Grenoble, France ² Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, CNRS, Ampère, UMR5005, 69621 Villeurbanne, France

provides Q at $V=V_{IN}$ and the output receives 2Q at

Typical Battery Charge/Voltage Relation

discrete

Output voltage V_{OUT} presents low voltage ripple even without output capacitance and slow switching frequencies.

SWITCHED BATTERY CONVERTER

A new topology for low frequency switched DC-DC converters using a battery as flying passive instead of traditional passives.

> To retain the batteries' steady voltage point, a micro-cycle is performed, in which a small amount of energy (in comparison with the steady state) is cycled in the batteries.

EXPERIMENTAL RESULTS

CORRESPONDING AUTHOR

