

2021 Power Supply on Chip Workshop

Integrated Power Electronics Components for Integrated Voltage Regulators and Power Modules

October 27, 2021

Integrated Power Electronics (IPE) Technical Working Group (TWG)

North Carolina State University

DCHopkins@ncsu.edu

Co-Chairs

Patrick McClusky University of Maryland mcclupa@umd.edu

PM Raj Florida International University mpulugur@fiu.edu

Cian Ó Mathúna Tyndall National Institute cian.omathuna@tyndall.ie fillion.consulting@gmail.com

Ray Fillion Fillion Consulting

Tzu Hsuan Cheng North Carolina State University tcheng8@ncsu.edu

YY Tan ON Semiconductor tan.yikyee@onsemi.com

Bob Conner X-Celeprint

Francesco Carobolante IoTissimo bconner@x-celeprint.com francesco@iotissimo.com

Jason Rouse Corning rousejh@corning.com

Heterogeneous Integration of Power

The integration of separately manufactured power electronic components and subsystems into higher-level assemblies that in the aggregate provide enhanced functionality and improved operating characteristics.

2021 update to Heterogeneous Integration Roadmap's Chapter 10: Integrated Power Electronics

- Part 1: Integrated Power Electronics Components for Integrated Voltage Regulators Focus of this presentation
- Part 2: Power System-In-Package (SIP) Modules
- Part 3: Integrated High Power Systems
- Part 4: Energy Harvesting

Agenda for each section:

- Summary
- Requirements
- Existing solutions and challenges
- Potential solutions
- Required R&D
- References

Cooperation

IEEE PELS ITRW Roadmap

IEEE EPS HI Roadmap

Multi-Stage DC-DC Conversion

1) PCB: voltage step-down

For systems with >3-5V system bus

2) SiP: IVRs

Significantly improve performance-per-watt

- Bypass majority of PDN
- Fine-grain power management

3) Load die: LDOs

Optionally provides additional voltage regulation

PCB = Printed Circuit Board SiP = System in Package

PDN = Power Distribution Network

IVR = Integrated Voltage Regulator

LDO = Low Drop Out linear regulator

Reduce IPEC Footprint and Height For Integration Under Load Die

IPEC = "VR Chiplet" (avoid "chiplet" terminology since IPEC doesn't have a standard chiplet interface)

IPEC Requirements

Metric	Generation			
Wietric	1	2	3	4
Input voltage (V)	3	3	5	5
Switching Frequency (MHz)	5 - 10	10 - 50	5 - 10	10 - 50
Output current density (A/mm ²)	10	20	10	20
Output voltage (V)	0.5 - 1.8			
Thickness (µm)	<100			

Reduce routing loss
Shrink passives, increase transient response
Support many rails / phases
Minimize power loss
Ultra-thin for embedding in SiP

Plus:

High <u>system</u> efficiency

IVR efficiency lower than PCB-mounted DC-DC converter efficiency is acceptable due to fine-grain power management significantly reducing load power consumption

- Ultra-low electrical and thermal resistance
- High reliability
- Low cost
 - Made with panel- vs. wafer-level processes
 - High yield
 - Known good die
 - Modularity

Challenge: Shrink For Integration in SiP Under Load Die

- Shrink footprint and height to <100μm
- Reduce gate and power routing parasitics

Source: Intel, A 32A 5V-Input, 94.2% Peak Efficiency High-Frequency Power Converter Module Featuring Package-Integrated Low-Voltage GaN NMOS Power Transistors, 2021 Symposium on VLSI Circuits

Co-Packaging Separately Manufactured Components Is Insufficient

- Power transistors with excellent figure-of-merit are insufficient e.g., GaN and GaAs
- Footprint and height is limited by size of separately manufactured components
- Performance is limited interconnects

 ~1mm+ distance between components is too much

Source: Sarda Technologies

Applied Power Electronics Conference (March, 2018)

Achieving High Current Density

Integrate in minimal footprint for each phase interconnects for:

- VCCIN, VCCOUT, VSS, VXBR
 With ultra low resistance to support high current density
- Gate drive with ultra low parasitics
- Control, protection and monitoring
 Between gate drivers and controller

source: Reduce Buck Converter EMI and Voltage Stress by Minimizing Inductive Parasitics, TI, Q3 2016

Existing Solutions

Challenges

- Cost
- Interconnects

Potential Solutions

Think Outside The Box (The Wafer)

Use large-area glass or ceramic substrates and PLP to:

- Perform 1st level of heterogeneous integration, reducing cost
- Provide ultra low resistance 3D interconnects

IPEC Example

One of many possibilities having wide range of footprints and phase counts

To load die

To SiP's substrate

with integrated inductors

Cross-Section View

IPEC Example (cont)

- >10 reduction in gate drive loop (and associated parasitics)

 0.1-0.2mm vs. 1-2mm
- <100µm thickness for integration in SiP Immediately under load die
- Use panel area with through panel vias and multiple thick RDLs for majority of interconnects
- Use expensive semiconductor wafer area primarily for semiconductors

 Gate driver and power transistor areas are <25% and <50%, respectively, of IPEC area
- Size each phase for integrated inductor (e.g., ~2A continuous, ~6A+ peak current)

IPEC Binning Options

Maximize IPEC Yield and Provide "Known Good Die"

Disaggregate Die into Small, Thin (<15µm) Transferred Chips (x-chips)

Densely pack source/drain fingers to minimize R_{DS(on)} • Area

- Connect gates to both sides of power transistor
- Minimize lateral current flow in thin metal layers <100 µm source / drain fingers running north-south

275x280μm² power transistor x-chip

Last step in wafer fab process

- Top metal conductors running east-west
- 5x5µm passivation openings to top metal Forms rows of connections for subsequent RDL

Massively Parallel Pick-and-Place

From Semiconductor Wafer to Panel

Semiconductor wafer area Tightly-packed x-chips (48 power transistors)

Panel area

Spread-out x-chips (48 power transistor)

Massively Parallel Pick-and-Place Example Micro Transfer Printing (MTP)

• Celeprint licenses MTP technology

Spin-out of who used MTP for CPV

(concentrator photovoltaics)

24.5 kW CPV system

- CPV modules passed IEC 62108 reliability test
- >25 billion 3-junction GaAs solar cell hours in field

Nova+ MTP Manufacturing System

• ASM AMICRA supplies MTP manufacturing systems

ASM AMICRA Unveils Industry's First Manufacturing Systems Incorporating X-Celeprint's MTP Technology for High Volume Heterogeneous Integration of Ultra-Thin Chips

X FAB Becomes First Foundry to Offer High Volume Micro Transfer Printing Capabilities Following Licensing Agreement with X Celeprint

Required R&D

- Panel-Level Processing (PLP)

 Employing a portfolio of state-of-the-art heterogeneous integration technologies
- Electronic Design Automation (EDA) tools and Process Design Kits (PDKs)
 For PLP heterogeneous integration
- Optimization of separately manufactured components for IVRs
 - Power transistors
 - Gate drivers
 - Inductors
 - Capacitors
- Integrating arrays of separately-manufactured components in IPECs customized for advanced topologies Multi-level switched inductor and switched capacitor converters
 - Improves performance and reduces voltage requirements
 - Requires many power transistors, gate drivers and passive components not practical without HI
- Stacking separately-manufactured components:
 - Power transistors to increase their gate periphery, reducing conduction loss
 - Capacitors to increase bypass capacitance.

Benefits

Improve	By HETEROGENEO
Performance	 Heterogeneously integrate large arrays of small, thin separately-manufactured components Enable advanced topologies requiring integration of many diverse components
Power	Reduce interconnect length (parasitics) and electrical / thermal resistance
Area	 Producing ultra-thin IPECs for integration in SiPs, power modules and PCBs
Cost	 Significantly increasing utilization of expensive semiconductor wafers 2x for IPECs; >10x for RF Providing "fan-out" without die shift and epoxy mold compounds Separately manufacturing each component using the optimal material and technology node Reducing die size, increasing yield Using low-cost, massively parallel manufacturing processes Relaxing manufacturing thermal constraints by separately manufacturing each component Leveraging existing OSAT ecosystem by producing IPECs which resemble conventional 2D ICs
Time-to- market	 Combining x-chips produced in different fabs and re-using them in multiple designs by stacking them in different configurations to manufacture different IPECs