

Applications Enabled by Integrated Switched Inductor Power Converters

POWER SOC 2021 Noah Sturcken, PhD Ferric President & CEO

NEXT GEN ELECTRONICS REQUIRE NEXT GEN POWER SYSTEMS

Integrated Power Converters enable savings...

Integration Improves System Performance

Conventional Power Delivery Network (PDN) Integrated Power Delivery Network (PDN)

Smaller loop inductance
Less bulk capacitance
Higher feedback bandwidth
Fewer parasitics
Less impedance overall

Integration Reduces System Complexity

Conventional SiP

SiP with PVR

APPLICATIONS ACROSS ALL ELECTRONICS

Smartphones and Wearables

Savings: 30% Size, 30% Battery Life

Space and Aerospace

>50% Weight and Power benefit relative to incumbent solutions

Datacenters / CPUs

Savings: 50% board area for power 100% increase in Peak Current

Industrial and Automotive

>30% Size, Cost and Power Benefit Relative to conventional solutions

LARGE (FRAGMENTED) MARKET TO DISRUPT

REQUIREMENTS FOR INTEGRATED POWER CONVERTERS ARE FRAGMENTED...

Package

- Multi-chip module, embedded, chip-stack or monolithic integration
- Ceramic, organic, wafer-level-package, wafer-to-wafer bonding

Voltage & Current

- (54V, 48V, 24V, 12V, 5V, 3.3V, 1.8V) to {5-0.3V}
- -1mA 1000A

Performance vs. Cost

Conversion Efficiency vs. Power Density vs. Cost

CHIP-SCALE POWER CONVERTERS CAN BE COMBINED & INTEGRATED TO ADDRESS REQS.

Part Number	Туре	Phases	V _{IN} (V)	V _{OUT} (V)	I _{OUT} (A)	Efficiency
Fe1038	Buck	8	1.8-2.5	0.6-1.5	0-3	>80%
Fe1508	Buck	12	1.6-2.0	0.25-1.4	0-20	>90%
Fe1512	Buck	18	1.6-2.0	0.25-1.4	0-30	>90%
Fe1515	Buck	18	1.6-2.0	0.25-1.4	3, 3, 10, 13	>90%
Fe4010	Buck	4	1.6-2.0	0.25-1.4	4x 0-1	>90%
Fe1810	Buck-Boost	4	1.6-2.0	0.9-2.0	2x 0-3.3	>90%

Example RF System in Package

Application Requires:

- Area reduction
- Power/Signal Integrity

Application Wants:

- Power savings
- Cost savings
- Design Flexibility

Customer adopts Fe1038 standard product power converter chiplets as KGD in organic MCM for all SoC and sensor power domains in module

Customers realizes

- Power, space and cost savings relative to incumbent
- Improved sensitivity from improved Power Integrity

Example Optical Module Solution

Application Requires:

- Standard Form-factor
- Standard input voltage
- Low Power Consumption

Application Wants:

- High integration
- Power Integrity
- Cost savings
- Design Flexibility

Customer adopts combination of standard product power converter chiplets as KGD in organic MCM to power all domains

Customers realizes

- Power, space and cost savings relative to incumbent
- Improved performance from better Power Integrity

Mobile Solution | 3D Package Integration

- Low-profile (<150um) PVR chiplets can be attached to landside of chip-scale packages or be embedded into wafer-level packages
- Consolidate SOC power supplies to a single intermediate 1.8V

Example Datacenter Solution

Application Requires:

- High Current Density
- High Conversion Efficiency
- Power Integrity

Application Wants:

- High integration
- Design Customization

Customer adopts Fe1512 standard product power converter chiplet as KGD in organic MCM to power core domains

<u>Customers realizes</u>

- increase in peak
 computational performance
 (>2x increase in max.
 available current)
- increase in steady state performance from reduced voltage/frequency margin

Datacenter Solution | 3D Package Integration

FERRIC POWER CONVERTER CHIPLETS

Thin-Film Magnetic Components

- Inductance density
 - > 300nH/mm², > 8,500nH/mm³
- Current density > 12A/mm²
- DC Resistance < 100mΩ
- Magnetic Coupling k > 0.9
- Ferric Technology fabricated by TSMC

enable....

DC-DC Converter Chiplets

- High switching frequency > 100MHz
- High bandwidth controller > 10MHz
- Optimization for high efficiency >90%
- Optimization for high density ~2A/mm²

FERRIC INDUCTORS

Ferric's CMOS integrated ferromagnetic thin-films enable high-density, low-profile on-chip/in-package inductive components for efficient on-chip power conversion

- Integrated with Wafer-Level Package Flow
- Fabricated with TSMC 130nm, 28nm, etc.
- Similar to other advanced Wafer-Level Package options

TSMC Advanced Backend Fab 1

TECHNOLOGY ROADMAP

	Current Generation #2			Next Generation #3			Future Generation #4		
	Input Voltage	Current Density	Conversion Efficiency	Input Voltage	Current Density	Conversion Efficiency	Input Voltage	Current Density	Conversion Efficiency
Ferric Power Converters	1.6-2.0V	1.5 A /mm²	90%	1.5-5V	3A/mm²	92%	1.2-54V	5A/mm²	94%
	Inductance	Resistance	Saturation Current	Inductance	Resistance	Saturation Current	Inductance	Resistance	Saturation Current
Ferric Inductors	1.4nH	20mΩ	2A	1.8nH	5mΩ	2.5A	5nH	5mΩ	4A

Fe1004U | 150mA, CHIP SCALE DC-DC STEP-UP POWER CONVERTER WITH INTEGRATED INDUCTORS

Key Features

- Integrated Magnetic Thin-Film Inductors
- Internal Synchronous Rectification
- Fixed Output Voltage: 2.5V-5V with ±2% accuracy (0.1V increment)
- Output Current: Up to 150mA
- Total Board Solution Size: 5 mm²
- Pulse Frequency Modulation
- Soft Start, Under Voltage Lockout, Over Current / Over Voltage Protection
- Load Disconnect
- Output LDO for VIN > VOUT
- PMBus Interface

V_{in} 1.8V-5.5V V_{out} 2.5V-5V

I_{Out} 0.15A V_{out_Ripple} < 10mVpp Efficiency >90%

IQ 500nA Temp -40°C - 125°C

TEST CHIP | 3A, CHIP SCALE DC-DC STEP-DOWN POWER CONVERTER WITH INTEGRATED INDUCTORS AND DIGITAL POWER INTERFACE

Key Features

- Two stage conversion integrated onto a single die
- First Stage: Divide-by-3 Resonant Converter
 - 2-phases
 - 3 Domains of stacked core FET bridges
 - Integrated Inductors, discrete capacitors
 - 95% Efficiency
- Second stage: 4-Phase Buck Converter
 - Integrated Inductors
 - Single Core FET bridge
 - 90% Efficiency
- Two stages enable higher input voltage
- 1MHz PMBus-Compliant Serial Interface

V_{in} 2.7V-4.8V V_{out} 0.6V-1.2V

I_{out} 3A V_{out_Ripple} 15mVpp Efficiency >80%

F_{sw RES}

F_{sw BUCK}

Temp -40°C - 125°C

NEXT GENERATION INDUCTOR - "RADIAL" ANISOTROPY

Electrical Current is passed through Biasing Coil to control magnetic core permeability and anisotropy

