Automotive Megatrends and Package Technology Solutions

Presented By: Vikas Gupta, ASE Group

In Collaboration with Heterogeneous Integration Roadmap Technical Working Groups Team

Outline

- Heterogeneous Integration Roadmap
- Semiconductors in Automotive Industry
- Automotive Growth Drivers
- Key Megatrends
 - Electrification
 - Autonomous Sensing
 - Processors
- Reliability
- Summary

Heterogeneous Integration Roadmap (HIR)

- Sponsored by 3 IEEE Societies (EPS, EDS & Photonics) together with SEMI & ASME Electronics & Photonics Packaging Division
- Comprehensively covering microelectronics technology ecosystem
- Articulates state-of-the-art Advances in Technology & Science, Future directions, Significant roadblocks & Potential solutions
- HIR is the Knowledge Roadmap & Knowledge Supply Chain for the Heterogeneous Future

Launched 10-10-2019 24 chapters, 590 Pages, Free Download

https://eps.ieee.org/technology/heterogeneous-integration-roadmap

Market/System Applications

- High Performance Computing & Data Center
- Mobile
- Medical, Health & Wearables
- Automotive
- IoT
- Aerospace & Defense

Cross Cutting Technologies

- Materials & Emerging Research Materials
- Emerging Research Devices
- Test
- Supply Chain
- Security
- Thermal Management
- Reliability

Heterogeneous Integration Components

- Single Chip and Multi Chip Integration
- Integrated Photonics
- Integrated Power Electronics
- MEMS & Sensor integration
- 5G Communications & Beyond

Integration Processes

- SiP
- 3D +2D & Interconnect
- WLP (fan in and fan out)

Co-Design & Simulation

Tools & Practice

Semiconductors in Automotive Industry

- Increasing semiconductor content & value in Automotive
- 80% of Innovations in automotive enabled by semiconductors
- Envisioning Heterogeneous Integration System, Function, Reliability, time to market?
- How would Adv Packaging Innovations in Mobile (5G & Smart Phone) & High-Performance Computing & Data Centers be made "applicable" to Automotive Future Applications?

Technical Working Group Contributors

- Rich Rice, ASE Group, <u>Rich.Rice@aseus.com</u>
- Veer Dhandapani, NXP, veer.dhandapani@nxp.com
- Sandeep B Sane, Intel, <u>sandeep.b.sane@intel.com</u>
- Shalabh Tandon, Intel, <u>shalabh.tandon@intel.com</u>
- Przemyslaw Jakub Gromala, Bosch, <u>PrzemyslawJakub.Gromala@de.bosch.com</u>
- Marco Munzel, Bosch, <u>Marco.Munzel@de.bosch.com</u>
- Johannes Duerr, Bosch, Johannes. Duerr@de.bosch.com
- Sven Rzepka, Fraunhofer, Sven Rzepka@enas.fraunhofer.de
- Prof Hongbin Yu, Arizona State University, Hongbin:Yu@asu.edu
- Klaus Pressel, Infineon, Klaus.Pressel@infineon.com
- Vikas Gupta, ASE, <u>Vikas.Gupta@aseus.com</u>
- Andreas Grassmann, Infineon, <u>Andreas.Grassmann@infineon.com</u>

2020 – 2030 Automotive Growth drivers

Autonomous driving (ADAS)

- Sensors & Computing
- More comfort & entertainment

Powertrain efficiency

- Electric Powertrain
- Cleaner thermal engines / pollution control

Vehicle Electrification Acceleration

- Strategy path for vehicle electrification has been accelerated by several singular events
- To reach significant emission reduction, MHEV and full HEV electrification approaches are not sufficient
- August 5, 2021 President Joe Biden announced a new national target for electric vehicles to make up half of all new vehicle sales by 2030
- Even hyper cars going electric

OEM Electrification Investments/Targets

\$330B investment by 2025 41% increase in last year

Yole, EE Times, March 2021

Autonomous Trend

Image Source: Tektronix

High-bandwidth and low-latency networks connecting all sensors, cameras, diagnostic, communications and central processing units will drive advances in artificial intelligence and machine learning

S Autonomous semiconductor market, \$ billion

Source: IHS Markit; McKinsey Center for Future Mobility

Outline

- Heterogeneous Integration Roadmap
- Semiconductors in Automotive Industry
- Automotive Growth Drivers
- Key Megatrends
 - Electrification
 - Autonomous Sensing
 - Processors
- Reliability
- Summary

Electrification – Power and Thermal

- Main challenges longer range and shorter charge times
- Power outputs increase to 350KW or more, requiring costly and nextgeneration power transistors and diodes.
- Higher voltage to enable faster charging for given battery current limits, lower losses in the vehicle
- Wider implementation of wideband gap devices.
- Need for specialty passives for supporting high energy efficiency

Electrification and Packaging

- Key Drivers
 - Lower cost \$/kW
 - Higher Power Density kW/kg
 - Smaller Size kW/L
- Enhanced modularity coupled with low inductance, low loss, improved thermal performance through advancement in package designs
- Advances in package interconnections, die-attach and substrate technologies playing a key role in package innovation and performance

Leadframe Base: Good Thermal

Dissipation, EMI Shielding

dissipation

High Tg Prepreg: >2.5KV break-

down Voltage **Substrate Copper**

Layer: 1, 1+1, 1+2

Copper Via: Low Rds_{on /}Inductance & High Current, High thermal

High Thermal D/A Epoxy Type: Sintering Epoxy, ~100W

Si, SiC, GaN Dies Embedding

Cavity Leadframe

Marking Side

Ball Side

aEASI P1 Structure 5 x 5 x 0.57 mm (excluding Passives) 1 Power Management Chip + 12 Passives 2+1 RDL

Sensing Technologies

Sensor Objective	Camera	RADAR	LiDAR	Ultrasound
Adaptive Cruise Control		Χ	Χ	X
Emergency Braking	X	Χ	Χ	Χ
Pedestrian Detection	X	Χ	Χ	X
Collision Avoidance		Χ	Χ	X
Traffic Sign Recognition	X			
Lane Departure Warning	X		Χ	
Cross Traffic Alert	X	X	Χ	
Surround View	X			
Blind Spot Detection	X	Χ	Χ	
Park Assist	X	Χ	Χ	Χ
Rear Collision Warning	X	Χ	Χ	X
Rear View Mirror	Χ			
Drowsiness Detection	X			

- Key components are:
 - Camera
 - Radar (Chapter update draft completed for 2020 release)
 - LiDAR

Autonomous Driving: Complementary Sensors L2+ to L5

Radar Evolution: From Corner Radar to Imaging Radar

Heterogeneous Packaging Evolution

ASE HPC/AI/ML Focus Package Platforms

- HPC/AI/ML the prevalent state-ofthe-art in device and process technologies
- Require highest processing rates, highest communication rates (low latencies and high bandwidth) and highest capacities
- Automotive processors starting to drive similar requirements; technology adoption accelerating

Co-Pkg Optics

Automotive Processor Roadmap – Infotainment/ ADAS

Reliability

Reliability Section – our focus

- Major change of the chapter
- Impact of megatrends on automotive reliability
 - Connectivity, Automation, Sharing, Electrification
- State of the Art
 - Reliability physics
- Anticipated challenges
 - New HW Architecture and SW interaction on HW reliability
 - New qualification criteria/test
 - Model based engineering
 - Digital twin and Prognostics and Health
 - AI/ML: physics enhanced models
 - Al assisted analysis methods
 - Reliability over supply chain, from wafer (chip) to system of systems (CPI, sub-system to system)
- Roadmap

Courtesy: Przemyslaw Jakub Gromala, Bosch

Executive Summary

- Automotive is one of the highest volume growth markets for semiconductor and advanced packaging in the coming decades
- Two major focus areas for new vehicles: causing major disruption
 - Electric Power Train
 - Autonomous driving
- Major impacts to system architecture and driver for heterogeneous integration:
 - Highly complex packaging for processors used in autonomous driving
 - Integration of advanced communications
 - Impacts and changes to sensor technology: LiDAR, Radar and camera
 - Power train electrification challenges requiring high voltage management
 - Ensuring higher levels of reliability in all components; convergence of HPC, Communications, Sensing & Power functions into cars

Thank You!

