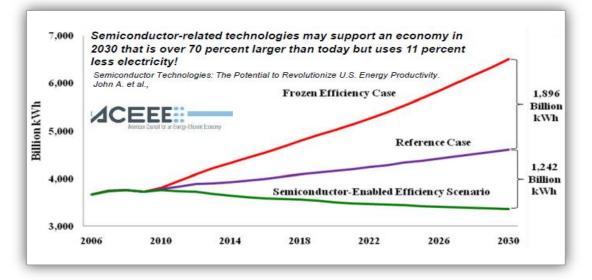
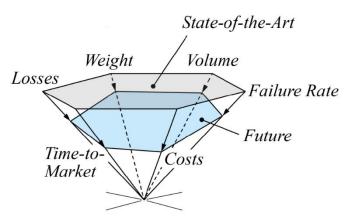
### **Reliability challenges in GaN**

Sameer Pendharkar October 26, 2021 PwrSoC Workshop 2021 *slides to post* 

Acknowledgements: S. Bahl, J. Joh, D. Lee




### An increasing appetite for data and electrification

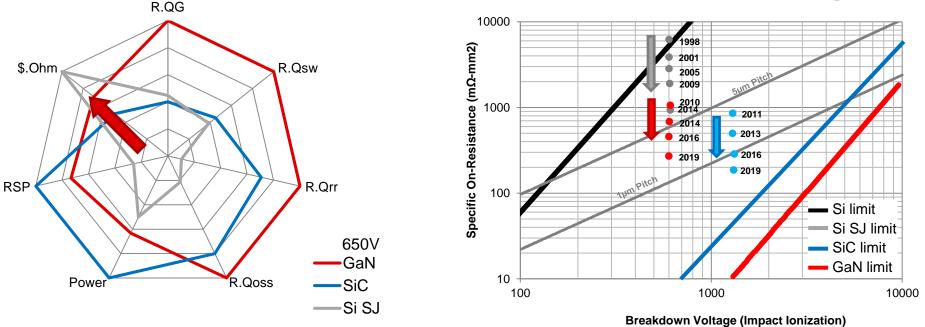

- As electrification and data connectivity needs continue to grow across the globe, semiconductors will play a key role in creating a better world by making electronics more efficient and more affordable.
- However, the expectations of consumers will also continue to grow in that electronics and the resulting semiconductors must also become more robust.



### **Semiconductor impact on power conversion**



"Semiconductor Technologies: The Potential to Revolutionize U.S. Energy Productivity", Report E094 of the American Council for an energy-efficient economy




Multi-dimensional optimization needed

Power (weight) density; Efficiency, Cost, Failure rate



### Performance improvement needs new technologies



- Improvement in device requires a (new) more expensive technology
- · Critical needs to achieve technology potential
  - Equipment and material advances
  - Understanding/modeling/improving different failure mechanisms

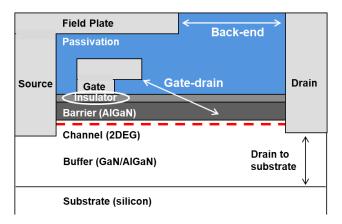


### **Steps to achieving reliable GaN**

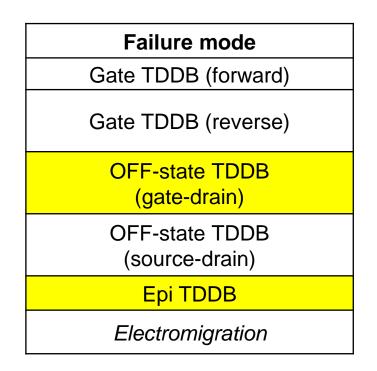
|                      | Si qualification and reliability                                                          |
|----------------------|-------------------------------------------------------------------------------------------|
| Component<br>level   | Address GaN Failure mechanisms<br>and calculate lifetimes                                 |
|                      | Measuring GaN specific                                                                    |
|                      | degradation parameters and                                                                |
|                      | selecting a stress test circuit                                                           |
|                      |                                                                                           |
| Application<br>level | Show that GaN is reliable for the actual switching application                            |
|                      | Assure robustness for extreme operating conditions like lightning surge and short circuit |

Use the established framework for



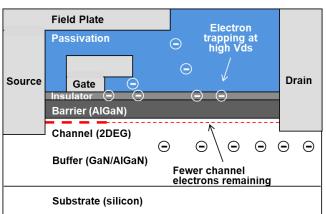

### **Failure modes and failure mechanisms**

| Level                | Failure mode                                                       | Failure mechanism                                                         |
|----------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|
| Component<br>level   | Increase in leakage current                                        | Time Dependent Breakdown (TDB)                                            |
|                      | Lower efficiency and overheating due to increase in dynamic Rds-on | Charge trapping                                                           |
|                      | Lloyd foilung                                                      | Time Dependent Breakdown (TDB)                                            |
|                      | Hard-failure                                                       | Hot-carrier wear-out (switching)                                          |
| Application<br>level | Hard-commutation related                                           | Reverse recovery                                                          |
|                      | Miller turn-on shoot-through                                       | Device hold-off at high slew rate                                         |
|                      | GaN device interaction with driver and system                      | Avalanching of Si FET during turn-off due to Coss mismatch in Cascode GaN |




### **Component level** reliability

### Time dependent breakdown




- High fields cause defect generation over time, increasing the leakage currents and causing eventual hard-failure
- Well known and studied for dielectrics used in Si IC's





### **Component level reliability**



### Charge trapping

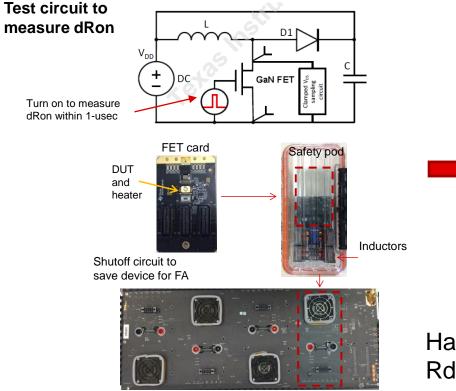
- Charge trapping high voltage / hot e-
- Dynamic Rds-on is high on the timescales of switching. It is difficult to measure on a tester, since the traps discharge quickly.

Classify switching stress type with switching locus

Choose an appropriate test-vehicle to accelerate the desired switching type

Generate a model and calculate lifetime




## **Dynamic Rdson reliability** with aging



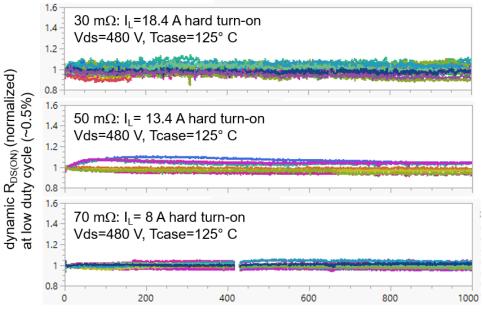
- Charge trapping causes higher dynamic Rds-on, which results in more selfheating and lower efficiency
- Device aging can increase trap density and result in higher dynamic Rds-on
- Need to validate that new traps are not being generated with aging



### Validating dynamic Rds-on reliability



Motherboard


Hard-switching test system, for dynamic Rds-on (and hot-carrier wearout) reliability



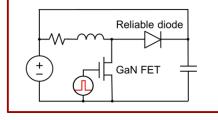


## **Dynamic Rds-on does not increase with aging**

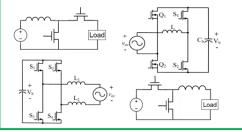
 Stable dRon at low duty cycle demonstrates lack of new trap creation and excellent material quality with aging



Stress time (h)


Stable dynamic Rds-on with aging at high-voltage, high-current, high-temperature, hard-switching




### Hot carrier wear out: Switching lifetime model



Stress using a testvehicle circuit suitable for accelerated stress



Evaluate switching lifetime for broad application use

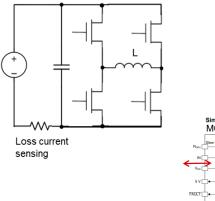


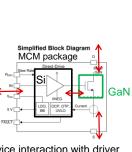
Voltage acceleration

• Exponential model (TDDB):  $TTF \propto e^{-\beta_v(V_{DS})}$ 

Current acceleration

• Exponential model:  $TTF \propto e^{-\beta_c(I_{Ch})}$ • Power-law model:  $TTF \propto (I_{Ch})^{-n}$ 


(electromigration, hot-carrier)


Temperature acceleration

• Arrhenius model:  $TTF \propto e^{\frac{Ea}{k}[\frac{1}{T}-\frac{1}{To}]}$ 



### **Reliable actual application operation: dHTOL testing**





GaN device interaction with driver (and other system components)

#### H-bridge circuit

- Recycle power
- Both hard and soft-switching stress at high power
- In-system stress modes



Stress rack: 200 kW of stress power



Application half-bridge boards under stress



### Summary

- GaN is a key enabler for power electronics. To gain widespread acceptance, reliability needs to be understood and demonstrated
- Detailed understanding of failure & degradation mechanisms allows predicting lifetime & engineering reliability problems.
- Traditional qualification does not imply desired lifetime in real applications. Use of switching test circuits is critical for application-level reliability validation.
- System-level design can ensure application reliability.



# Thank you!

