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Introduction
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Motivation
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Miniaturization, effciency, 
reliability & controllability, 
cost

Monolithic GaN 
integration: 
Power + Control



4

The E-Mode GaN Device

 Utilizes high electron mobility of GaN: Small chip area  lower parasitic 
capacitance  high speed, efficiency, miniaturization, lower system cost

 No junction  no body diode, zero reverse recovery charge QRR

 >10x lower gate charge QG vs. silicon
 Lateral device: Simpler monolithic integration and packaging  GaN ICs
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System Integration: The Conventional Approach
GaN + Silicon Gate Driver and Control

GaN

QGaN

Power 
HEMT

Gate 
Driver

Supply 
Generation

Closed-loop 
control

VDD
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Silicon (CMOS)

Some GaN related topics :
 Bipolar / 3-level gate drive
 Integrated buffer caps
 Gate loop inductance

Recent products: LMG341xR050 (TI 2020), MASTERGAN1 (ST 2020)
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Silicon Gate Drivers for GaN
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Gate Drivers for GaN: High Voltage Energy Storing (HVES)

High-Voltage
Energy Storing
(HVES)

Seidel et al., 
ISSCC 2017, 2018 [1], [2]QG = ΔVC ⋅ C 

Integration of the buffer capacitor smaller parasitics and footprint, fast switching
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 Increased buffer voltage reduces buffer C and enables on-chip integration
 Example: 15V  11nC well suitable for GaN because of low gate charge QG
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Gate Driver IC with HVES

MNG

Gate Driver 
with HVES MPG

VSUP

Driver IC

QGaN

Cgs

MNS

MPS

CDRV

VDRV
Gate Driver 
with HVES

VSUP

 Full-Bridge for bipolar / three-level driving and stable DC level
 HVES at gate and source for fast on / off transitions
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180nm Si
CMOS

Seidel et al., 
ISSCC 2017, 2018 [1], [2]

Silicon 
(CMOS)
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Flexible Driver Placement: Large Gate Loop

Lower temperature

Multi-layer PCB

Space restrictions

Modularity

High temperature

High-current substrate

Optimized transistor and heat sink placement

Modularity
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ML

MH 
Ctrl

RB

MP

DR

DFW

MH

CHV

VDRV

VSUP

VHV

Lloopiturn-onDriver 
IC

QGaN

Lloop Cgs

HVES Applied to Large Gate Loop
 Loop inductance utilized for 

resonant gate driving
 Fully integrated solution
 Lower overshoot, shorter rise time
 Measurements for 25cm  600nH: 

Kaufmann, Seidel et al., 
CICC 2020 [3]
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Monolithic GaN Integration
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Monolithic GaN-ICs – Foundries / IDMs and GaN Industry
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Monolithic GaN Integration: Available Devices
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Monolithic GaN Integration: Opportunities and Challenges

 Monolithic integration: Gate loop inductance  0
 Tracks PVT variations of the driving voltage for the integrated GaN power device

 Limited device types and options, no p-type 
 No diodes, neither designed nor parasitic
 Immature technology with poor analog properties (gain, matching, noise)
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To be addressed on system and circuit level: “learning from the 1970s”
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Monolithic GaN Integration: System Partitioning
Gate driver and power transistor in GaN  nearly zero gate loop inductance:

GaN Die

Xue et al. (Navitas), 
APEC2017 [4]QGaN

Power 
HEMT

Gate 
Driver

Supply 
Generation

Closed-loop 
control
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Recent products: 
 GaNFast™ Power IC (Navitas 2020)  includes supply regulator
 ePower™ Stage 80 V, 15 A (EPC 2021)  includes bootstrap rectifier
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Monolithic GaN Integration: System Partitioning
Full system in GaN:

GaN Die

QGaN

Power 
HEMT

Gate 
Driver

Supply 
Generation

Closed-loop 
control

VDD
Kaufmann et al., 
ISSCC 2020 [5], [6]
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GaN Gate Drivers
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Gate Driver without p-Type Device

 Large quiescent current
 Nearly rail-to-rail output

 Low quiescent current
 Output GND … VEN-Vth2

Resistor Pull-Up N-Type Pull-Up

 Bootstrapped EN signal (VDD+Vth) required for rail-to-rail operation
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Bootstrapped n-Type Rail-to-Rail Gate Driver
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Kaufmann et al., 
ISSCC 2020 [5], [6]
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Gate Driver Toplevel

 Split pull-up Q2 for quick and efficient turn-on
 Identical rail-to-rail driver for pull-up and pull-down 
Monolithic GaN – Unleashing the Potential by Integrating Power, Sensing and Control   ▪ PwrSoC 2021                                                               
Bernhard Wicht  ▪ Leibniz University Hannover, Germany

Kaufmann et al., 
ISSCC 2020 [5], [6]
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Gate Driver with Miller-Plateau Tracking
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H.-Y. Chen et al. 
ISSCC 2021 [7]

Based on Vth-sensing and PTAT circuit in GaN 
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Sensing and Control
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Technology Challenges: Matching
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Vth Mismatch

 Pelgrom’s matching law 𝜎𝜎∆𝑉𝑉𝑉𝑉𝑉 ∝ 1/ 𝑊𝑊 � 𝐿𝐿 (JSSC 1989) is also valid for GaN
 Much larger mismatch of GaN leads to +/- 200mV Offset
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Comparator with Autozeroing (all in GaN)

Input Stage 
kla

Cross-Coupled 
Latch

Output 
Stage

VDD

Q1 Q2

Q3

Q4

Q5
Q6 Q11

R3

R2R1

Q9 Q10 Q12

OUT
R4

Q7 Q8

+-

 Input stage
 Common-mode 

feedback for self-biasing
 Cross-coupled latch 
 Full-swing output stage 

Q11,12 and R3,4

Challenges: 
Low input common mode < Vth, poor matching offset ~200mV  
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Inspired by 
Tsividis et al., 
JSSC 1980 [8]
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Autozeroing

Input Stage

VDD

Q1 Q2

R2R1

Q9 Q10

Vref
C2 C1 Vref

Vsig

ϕ 

ϕ ϕ 

ϕ 

S3S4

ϕ=1: Differential pair in unity gain
 Input referred offset sampled 

on C1,2 
 C1,2 additionally used for level 

shifting to support input 
common-mode < Vth

ϕ=0: Regular comparator 
operation

Switches S3,4 implemented as 
bootstrapped n-type transistors
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Technology Challenges: Voltage Gain
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Rbias

Vin

VoutVout

MN

MP

Vin

Vbias

Si CMOS GaN

Lack of p-type device:
 Similar intrinsic gain, but GaN has low single stage gain ~ 10 V/V due to load resistor
 High power consumption for slow resistor-transistor logic gates
 Pull-up resistor requires significant layout area

𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑅𝑅𝑏𝑏𝑏𝑏𝑙𝑙𝑏𝑏~
1

10
� 𝑟𝑟𝑙𝑙𝑏𝑏



27

Technology Challenges: Digital Logic Gates
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 (relatively) large input capacitance
 µn ~ 3 ∙ µp WMP ~ 3 ∙ WMN

 trise ~ tfall

 No DC cross current
 Pull-up area ~ 3x pull-down area

Vout

MN

MP
Vin

Rbias

Vin

Vout

Silicon: CMOS Inverter GaN: Resistor-Transistor Logic Inverter (RTL)

 Small input capacitance
 Rds,on<10kΩ, but Rbias>90 kΩ (Vout<500mV)
 trise ~ 10 ∙ tfall

 DC cross current ~60 µA
 Layout: Pull-up area ~ 20x pull-down area
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Reference Voltage Generator
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H.-Y. Chen et al. (NCTU) ISSCC 2021 [7]

negative temperature coefficient
of a d-mode current source 

positive temperature coefficient of an 
e-mode transistor’s threshold voltage
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A Monolithic GaN Converter

Monolithic GaN – Unleashing the Potential by Integrating Power, Sensing and Control   ▪ PwrSoC 2021                                                               
Bernhard Wicht  ▪ Leibniz University Hannover, Germany



30

Monolithic GaN Integration: 400V Offline Buck Converter
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Kaufmann et al., 
ISSCC 2020 [5], [6]
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Monolithic GaN Offline Buck Converter
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Kaufmann et al., 
ISSCC 2020 [5], [6]
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Monolithic GaN Offline Buck Converter
 Gate driver and high voltage

power HEMT
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Kaufmann et al., 
ISSCC 2020 [5], [6]
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Monolithic GaN Offline Buck Converter
 Gate driver and high voltage

power HEMT
 Peak current comparator

with autozeroing
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Kaufmann et al., 
ISSCC 2020 [5], [6]
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Monolithic GaN Offline Buck Converter
 Gate driver and high voltage

power HEMT
 Peak current comparator

with autozeroing
 Zero current detection for

boundry conduction mode
 Max off timer for startup
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Kaufmann et al., 
ISSCC 2020 [5], [6]
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Monolithic GaN Offline Buck Converter
 Gate driver and high voltage

power HEMT
 Peak current comparator

with autozeroing
 Zero current detection for

boundry conduction mode
 Max off timer for startup
 HV supply regulator for self-

biased offline operation
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Kaufmann et al., 
ISSCC 2020 [5], [6]
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Comparison: Die Micrograph

Maik Kaufmann Monolithic Integration in E-Mode GaN Technology, Sep. 7th, 2021

Silicon, RDSon = 3.4Ω

GaN, RDSon = 1Ω

GaN achieves 1/3 on-resistance using only 1/3 die area
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Comparison: Efficiency over Vin

Maik Kaufmann Monolithic Integration in E-Mode GaN Technology, Sep. 7th, 2021

Lout = 470uH
fsw = 89.1 … 131.3 kHz

GaN implementation achieves higher efficiency 
under various operating conditions 
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Higher 
GaN 

integration 
and higher 
efficiency

10-50W Offline Converter Integration Trends

 95.6% peak efficiency  highest achieved with fully integrated power stage
 Low component count and small passives  44W/in3 power density
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Conclusion - Monolithic Integration in GaN
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 Power + sensing + control on one single die

 Eliminates gate loop parasitics

 Tracks PVT variation of the driving voltage for the GaN HV transistor

 Analog properties (gain, matching, etc.) still worse than silicon

The presented GaN circuits show high levels of integration for compact 
and efficient high-voltage power supplies

Acknowledgement: Thanks to Maik Kaufmann for his contributions
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