

Integrated ion capacitors as an innovative high energy/power density storage device

S. Oukassia

Team members:

V. Sallaz^b, C. Secouard^a, I. Chevalier^a, S. Poulet^a, J-M. Boissel^a, F. Geffraye^a, M. Bedjaoui^a, J. Rouchou^a, V. Salvador^a, S. Prabhakaran^b, C. Laviron^a, F. Voiron^b, Y. Lamy^a

^a Univ. Grenoble Alpes, CEA, LETI, 38000 Grenoble, France

^b MURATA integrated passive solutions, 14000 Caen, France

Outline

- Integrated energy storage devices, the main challenges
- Integrated ion capacitors: a paradigm shift
- Ion capacitors electrical performance
- Conclusion

Integrated energy storage: a key technology enabler

The emergence of novel multifunctional internet of things and wearable electronics = the development of innovative energy storage devices

Integrated energy storage: main challenges

≥10 μ F* (μ Ah)**/mm², usually necessary for most demanding applications, thick (10 μ m+) active electrodes are needed

Advanced patterning of exotic materials (ionics) is mandatory

Compatibility with established **integration** approaches and packaging solutions are preferred

Especially for architectures with **thick electrodes and wafer level packaging**

Long cycle life (1M*/1K** full discharge cycles, <10% capacity loss)

Integrated energy storage, LETI developments

Thin film batteries at LETI

25x25 mm² TFB, 1mAh

autonomous micro energy sources (AMES)

20x20 mm² TFB, 0.5mAh

Smart windows
Transparent energy
source

25x5 mm² TFB, 0.1mAh

Nanodrone energy source (defense/civil)

System in package backup power

1-3 mm² TFB, >10μAh

Wearables
Implantable sensors

20x20 mm² TFB, 0.2mAh

Flexible IoTs
System on foil

Thin film batteries at LETI

TINY thin film batteries: schematic illustration

Device after dicing

- -TINY platform for TFB: 8" fully compatible with microelectronics fabrication process
- -free form factor, custom layout associated to advanced patterning capabilities

Thin film batteries

Capacity variation with current (0-0.25mA)

-TFBs exhibit the highest energy and power densities, reaching **0.89 mAh.cm⁻² at 10μA.cm⁻² and 0.45 mAh.cm⁻² at 3mA.cm⁻²** in comparison to results from literature

Outline

- Integrated energy storage devices, the main challenges
- Integrated ion capacitors: a paradigm shift
- Ion capacitors electrical performance
- Conclusion

Integrated ion capacitors: a paradigm shift

- -a broadband all-in-one capacitor encompassing ion and dielectric storage mechanisms
- -ion storage maintained at high power density (/frequencies)

-on chip integration

Integrated ion capacitors: a paradigm shift

Integrated ion capacitors: a paradigm shift

- -C_{ion} related to electrical double layer formation at the ion conducting electrode interfaces
- -C_{diel} related to polarization of the solid state ion conducting structure

Outline

- Integrated energy storage devices, the main challenges
- Integrated ion capacitors: a paradigm shift
- Ion capacitors electrical performance
- Conclusion

- 10% loss in capacitance from 50 mV/s to 1 V/s (electrodes limitation)
- -capacitance fading for higher scan rates (ion conducting limitation)

- High cycling behavior with 99,8% coulombic efficiency, almost perfectly reversible cycles
- Capacity decay of 5.10⁻⁴ %/cycle

- Arrhenius' law respected within T range
- Switch between ion conduction and dielectric modes shifted towards higher frequencies, no change in capacitance values

Conclusion

- An innovative integrated ion capacitor has been proposed and successfully fabricated to demonstrate a broadband behavior from DC to GHz
- The device encompasses concomitantly electrical double layer and dielectric capacitance, respectively of 10 and 1 μ F/mm² below/above 10KHz. Future generation will focus on a switching frequency around 1MHz and a 100 μ F/mm² for DC range capacitance
- Standard microfabrication process flow (8") has been used and should allow for a compatibility with an on chip integration approach
- → ion integrated capacitor should be of interest for a wide scope of applications, especially in the field of nanoenergy storage and processing

Acknowledgements

Warm thanks to our partner MURATA Integrated Passive Solutions for the fruitful collaboration.

Related Publications

[1] V. Sallaz et al., ECS Meet. Abstr. 2019, doi: 10.1149/ma2019-02/3/161.

[2] V. Sallaz et al., J. Power Sources 2020, doi: 10.1016/j.jpowsour.2020.227786.

