

Fully Integrated Voltage Regulators using inpackage and on-die inductors to supply mobile

Jens Masuch, Santosh Kulkarni, Mark Childs, Jonathon Stiff, Holger Petersen, Aysel Yildiz, Victor Dias, Cristiano Azzolini

Agenda

Introduction

Microprocessor Power Supply- Architecture

Dialog's Integrated VR- Discrete coils & Integrated Coils

Measurements & Analysis

Dialog's IP Portfolio- Buck Converter

Evolution of Products & Power Delivery

EVOLUTION OF MEDIA

iPhone 11 - Power cost ~ 12%

Achieving increased power density, performance & cost requires integration of PMIC with SoC

Reducing the area for power conversion

Agenda

Introduction

Microprocessor Power Supply- Architecture

Dialog's Integrated VR- Discrete coils & Integrated Coils

Measurements & Analysis

Dialog's IP Portfolio- Buck Converter

Dual-Stage Buck Architecture

PMIC-in-Package

Dual-stage buck system

- Stage-1 pre-regulator typically remains with main system PMIC
- Stage-2 high-frequency buck is in-package with SoC
- Dual-stage system is optimized for target SoC load profile

- Target fsw < 5MHz
- Target efficiency ~93% @ 2:1 voltage ratio •
- Low accuracy, high efficiency, low bandwidth, low power modes
- External magnetics

- Target fsw > 50MHz
- Target efficiency ~85% @ 2:1 voltage ratio
- High accuracy, high efficiency, wide bandwidth, droop mitigation
- On-die/in-package magnetics

Benefits of Dual-Stage System

Droop Mitigation

- 1. Wide bandwidth buck converter (stage-2 regulator)
 - Very effective at eliminating 2nd and 3rd droop
 - Limited effect on 1st droop due to bandwidth limitations
- 2. Large on-die decoupling capacitors
 - Very effective at reducing 1st droop
 - Tends to be very area intensive (even with 20fF/µm MiM capacitors).
- 3. SoC clock stretching in response to voltage droop
 - Requires close interaction between PMIC and SoC to detect and respond to droop
 - Careful balance between too much and not enough clock stretching
- 4. Parallel high-speed OTA
 - Behaves as a closed-loop wide bandwidth parallel current source
 - Low efficiency, but only triggered under droop conditions
- 5. Non-linear droop response
 - Synchronous non-linear phase alignment on droop detection
 - Use of fast triggers and high-speed comparators
 - Non-linear response to droop conditions is effective but difficult to control

Different Architecture options

Compare different architecture options for power management

- Five main PMIC architecture options for microprocessor power supply
 - 1. 2x Buck: 1st stage from 5V to 1.5V, 2nd stage from 1.5V to 1V
 - 2. 1xBuck: single stage 5V to 1V direct conversion
 - 3. CP + Buck: unregulated 1st stage charge-pump from 5V to ~1.5V, 2nd stage from 1.5V to 1V
 - 4. MLC + Buck: regulated 1st stage MLC from 5V to 1.5V, 2nd stage from 1.5V to 1V
 - 5. 1x Hybrid: 5V to 1V direct conversion

Parameters	2x Buck	1x Buck	CP+Buck	MLC+Buck	Hybrid
Peak efficiency	80%	80%	82%	82%	84%
Package size (approx.)	Y mm ²	1.5Y mm ²	1.5Y mm ²	1.2Y mm ²	1.5Ymm ²
Comments	Good compromise (base case)	Poor peak eff. & moderate cost increase	Good efficiency & moderate cost increase	Good efficiency & small cost increase	Excellent efficiency & highest cost

VR using coupled coils without Pre-reg

Stelvio is a prototype dual-phase buck converter with coupled-coils

Parameter	Value	
V _{IN}	2.3 - 4.9 V	
V _{OUT}	0.5 – 1.2 V	
Switching Frequency	6 - 9 MHz	
Max I _{OUT} DC	15 A	
Max I _{OUT} Pulsed	25 A for 25% duty cycle	
Buck+BOM	16.4 mm ²	
Peak Efficiency	87% (5V-Vin)	

- ✓ Coupled coils increase power density
- ✓ Improved transient response
- √ 31% reduction in BOM+Si over existing solution

Stelvio 2- phase efficiency comparison

Efficiency for different Vin at 6MHz

Agenda

Introduction

Microprocessor Power Supply- Architecture

Dialog's Integrated VR- Discrete coils & Integrated Coils

Measurements & Analysis

Dialog's IP Portfolio- Buck Converter

Dialog's IVR test chip – Merckx-sub

Merckx variants

Merckx-Sub:

Merckx-Sub- two design variations- in-package inductors & discrete 0402 inductors

Merckx-Sub layout

Merckx-Sub -Discrete, Air coils in package

Merckx-Sub design variations

- Merckx silicon contains two identical 4-phase bucks (total 8A each)
- Merckx-Sub includes discrete inductors and air coils in package

	Discrete (Magnetic core)	Spiral air coils (in-package)
Technology	Package	ETS-Package
L	6 nH	2.7 nH
DCR	21 mΩ	35 mΩ
L Footprint Area	0.72 mm ²	0.9 mm ²
Isat	3 A	>3 A
Comments	Cost/Integration challenges	EMI

discretes

in-package air coils

Merckx substrate

- Merckx-Si: two design variations:
 - 3rd party on-die toroidal inductor (IVR0)
 - air-core spiral inductors (IVR1)
- Inductors implemented in special backend process with 2 ultra thick copper layers (plus a magnetic core layer for the 3rd party inductor)
- metal-stack of original Merckx-IC slightly adjusted to connect to connect to inductors

Agenda

Introduction

Microprocessor Power Supply- Architecture

Dialog's Integrated VR- Discrete coils & Integrated Coils

Measurements & Analysis

Dialog's IP Portfolio- Buck Converter

Summary of Achieved Measurements

Summary of Achieved Measurements

Merckx-Si Results

- on-die spiral is roughly 4% worse than substrate spiral
 - efficiency drop is mostly due to higher AC-resistance
- 3rd party toroidal inductor is another 4% worse
 - · at light loads due to core loss
 - at high loads due to larger DCR (toroid makes connection to FETs more difficult)

Merckx-Si: IVR0 (toroid) vs IVR1 (air-core) @78MHz

Measurements: Load Step/Transient Response

- Discrete coils have lower ac losses (Higher inductance; lower ac current)
- At higher dc current-dc losses dominate performance, Discrete coils have lower dc resistance

preliminary EMI check

- Near-field EMI measurements done on Merckx-sub:
 - Placing probe directly on top of the package, turn on either IVR0 or IVR1 and compare the PSD
 - Capture highest power with max-hold function
 - IVR0 air-core coils create ~6dB stronger H-field
 - Similar results with 25mm probe 20mm above the PKG
 - but IVR0 also has ~2x current ripple due to lower inductance

Rohde&Schwarz near field

Dual Stage Efficiency measurements

Measurements with pre-regulator & IVR

• Peak efficiency of 78% when pre-regulator and IVR are together

Agenda

Introduction

Microprocessor Power Supply- Architecture

Dialog's Integrated VR- Discrete coils & Integrated Coils

Measurements & Analysis

Dialog's IP Portfolio-Buck converters

Comparison with SoA

Dialog Buck technology portfolio

Best suited for Wearable

Best suited for SoC applications

2S/3S-to-1S battery conversion

- Dialog is about to introduce a new family of hybrid converters (HyperConverter™)
 - Battery de-serializer to convert a 2S or 3S battery stack voltage to a 1S environment
 - converts 4.0V to 13.5V input voltage to 2.8V to 5.3V (programmable)
 - conversion rate choosen to optimize efficiency => practically loss-less across 3 decades of load
 - increases usable input voltage range compared to a cap-divider
- This converter extends the presented 2-stage topology for large phones or tablets
- measured efficiency results from first test-chip shown here

The power to be

