

Hybrid Converters for Mobile and IoT Applications

UCSD

Patrick Mercier University of California, San Diego

Power Management Research Focus Areas

High Power Density Hybrid Converters: Mobile phones, data centers, automotive

Integrated High-Voltage Conversion Microrobotics, Neural Implants

RF Power Amplifiers 5G, Wi-Fi 6, Long Range IoT

Wide Dynamic Current Range Converters IoT, Wearables

Power Management Research Focus Areas

High Power Density Hybrid Converters: Mobile phones, data centers, automotive

Integrated High-Voltage Conversion Microrobotics, Neural Implants

RF Power Amplifiers 5G, Wi-Fi 6, Long Range IoT

Wide Dynamic Current Range Converters IoT, Wearables

Major limiter in IoT devices: battery size / battery life

<u>Challenge:</u> Not a lot of room for large passives/converters

Challenge: Require high efficiency over 1,000,000x dynamic range

Research goal: Simultaneously increase <u>efficiency</u> and <u>power</u> <u>density</u> over a <u>wide</u> <u>dynamic range</u>

Powering IoT and Wearables in Scaled-CMOS

Conventional

UCSD

PMU*: Power Management Unit with or without off-chip inductor

Li-ion Fully-Integrated PMU Challenges in 28nm FDSOI

Wearables

Output

Input

PMU

Towards Fully-Integrated Li-ion PMU in Scaled CMOS

JCST

S.S. Amin et al., JSSC'19

Conventional 4-Level Converter Area Penalty

UCSD

S.S. Amin et al., JSSC'19

Driver Architecture

Measurement Results

S.S. Amin et al., JSSC'19

Center for Wearable Sensors

Towards Small Form-Factor Single-Inductor Converters

S.S. Amin et al., ISSCC'18/JSSC'18

Time-Shared Inductor for Multi-Input Harvesting

S.S. Amin et al., ISSCC'18/JSSC'18

Challenge: decoupling MPPT and Load Regulation

JCSI

S.S. Amin et al., ISSCC'18/JSSC'18

MISIMO Event Driven Controller

UCSD

S.S. Amin et al., ISSCC'18/JSSC'18

MISIMO Measurement Results

Center

for Wearable Sensors

Hybrid SIMO

H-SIMO: Hybrid SIMO

Center

for Wearable Sensors

- Li-ion compatible in 28nm FDSOI
- Simultaneously regulates 3 loads w/ one inductor
- Peak efficiency = 91.4%
- 4,000x dynamic range w/ >70% efficiency

S.S. Amin et al., CICC'20

Power Management Research Focus Areas

High Power Density Hybrid Converters: Mobile phones, data centers, automotive

Integrated High-Voltage Conversion Microrobotics, Neural Implants

RF Power Amplifiers 5G, Wi-Fi 6, Long Range IoT

Wide Dynamic Current Range Converters IoT, Wearables

Inductor-first conversion

Split into two half-sized inductors and stack at input

The input capacitor is now flying

All passives are stacked at input

Inductors are placed at the low-current side of the converter

A. Abdulslam et al., ISSCC'19

PS3B Measurement Results

efficient stacked-passives, smaller inductors volume

Top-side 2.13mm 111111111111111 2.33mm **Bottom-side** 2.13mm 2.33mm

Center for Wearable

Sensors

Li-ion-compatible SMML Converter

- A symmetric modified multilevel ladder (SMML) converter:
 - Consists of two sides each with 2 capacitors and 6 switches.

✤ Features:

- ✓ Decreased conduction losses due to inherent phase interleaving.
- Minimum blocking voltage on all switches/capacitors.
- ✓ No need for voltage balancing modules flying capacitors are naturally stable.
- All necessary supplies are generated internally to power drivers and level shifters.

A. Abdulslam et al., JSSC'20

SMML Measurement Results

Center

for Wearable Sensors

The inductor and the output capacitor are mounted under the chip

Power Management Research Focus Areas

High Power Density Hybrid Converters: Mobile phones, data centers, automotive

Integrated High-Voltage Conversion Microrobotics, Neural Implants

RF Power Amplifiers 5G, Wi-Fi 6, Long Range IoT

Wide Dynamic Current Range Converters IoT, Wearables

CMOS Power Amplifier Voltage Challenge

Idea: utilize many efficient ~1V class-D PAs and combine power with transformers

Problem: three voltage conversion stages leads to cascaded losses:

 $\eta_{tot} = \eta_{DC-DC} \, \eta_{PA} \, \eta_{xfmr} < 30\%$

Why do we go down, then back up in voltage? There must be a better way!

L.G. Salem et al., JSSC'17

UCSD

Solid-State RF Impedance Transformation

Idea: generate large RF voltages directly from a battery using ~1V devices by stacking PAs, then flying subsequent PAs between the rails of the prior stages in a *House-of-Cards* Topology

UCSD

Solid-State RF Impedance Transformation

Idea: generate large RF voltages directly from a battery using ~1V devices by stacking PAs, then flying subsequent PAs between the rails of the prior stages in a *House-of-Cards* Topology

Solid-State RF Impedance Transformation

Idea: generate large RF voltages directly from a battery using ~1V devices by stacking PAs, then flying subsequent PAs between the rails of the prior stages in a *House-of-Cards* Topology

House-of-Cards (HoC) Schematic

L.G. Salem et al., JSSC'17

Measurement results: PAE

Acknowledgements

UC San Diego

JACOBS SCHOOL OF ENGINEERING

Center for Wireless Communications

