

Faster, Higher, Monolithic – Efficient Energy Conversion with GaN

Bernhard Wicht

Leibniz University Hannover, Germany

PwrSoC Corridor Webinar Series 2020 International Workshop on Power-Supply-on-Chip November 11, 2020

1

Introduction

Faster, Higher, Monolithic – Efficient Energy Conversion with GaN · PwrSoC Corridor Webinar Series 2020 Bernhard Wicht · Leibniz University Hannover, Germany

Demands on Modules and Components

Bernhard Wicht · Leibniz University Hannover, Germany

Success Factors

\rightarrow Miniaturization, effciency, reliability & controllability, cost

Success Factors

\rightarrow Miniaturization, effciency, reliability & controllability, cost

Bernhard Wicht · Leibniz University Hannover, Germany

The E-Mode GaN Device

IMS

Institute of Microelectronic Systems Leibniz Universität Hannover

- Utilizes high electron mobility of GaN: Small chip area → lower parasitic capacitance → high speed, efficiency, miniaturization, lower system cost
- No junction \rightarrow no body diode, zero reverse recovery charge Q_{RR}
- Lateral device: Simpler monolithic integration and packaging \rightarrow GaN ICs

GaN for Power Electronics

Gate Driver		Si CoolMOS C7 * (650V / 52mΩ / 33A)	GaN Transistor ** (650V / 55mΩ / 30A)
	V _{GS}	15V	~5V
	V _{th}	3.5V >1	0x 1.6V
	Q _G	64nC	5.8nC
	Q _{RR}	10µF	0

Key parameters of GaN transistors:

*IPP65R065C7, **GS66508T

- ~5V gate drive, low threshold voltage $V_{\rm th}$
- >10x lower gate charge Q_G , zero reverse recovery charge Q_{RR}

GaN Driver Requirements: Faster, Higher, Stronger

Miniaturization

HIGHER efficiency: Low switching losses, high dVDS/dt Reliability and save operation

- Save on- and off-state
- Low V_{GS} overshoot

Gate Driver – Turn-on Behavior

IMS

Institute of Microelectronic Systems

Leibniz Universität Hannover

- L_{par} , C_{bp} and C_{gs} form a resonant tank $\rightarrow V_{\text{GS}}$ overvoltage and ringing
- Gate resistor to prevent gate overvoltage
 → slows down the driver

Gate Driver – Save Off-State

- dV_{DS}/dt ≫100V/ns (GaN)
 → large current i_{loop} through C_{gd}
- *R*_G and *L*_{par} → risk for Q_{HS} to turn on
 → cross current
- Addressed by:
 - Bipolar gate drive ($V_{GS} < 0V$)
 - Larger C_{qs}
 - \rightarrow reduced efficiency and speed

Full-Bridge Gate Driver for Bipolar and Three-level Driving

High-Voltage Energy Storing (HVES)

Faster, Higher, Monolithic – Efficient Energy Conversion with GaN · PwrSoC Corridor Webinar Series 2020 Bernhard Wicht · Leibniz University Hannover, Germany

Leibniz Universität Hannover

Integration of the buffer capacitor \rightarrow fewer interconnections, smaller parasitics, smaller footprint, fast switching

Example:

IMS

Institute of Microelectronic Systems

 $Q_G = 10nC, \Delta V_c = 0.1V \rightarrow C \ge 100nF$

 \rightarrow How to integrate a capacitor of this size?

Gate Drivers for GaN: High Voltage Energy Storing (HVES)

Integration of the buffer capacitor \rightarrow fewer interconnections, smaller parasitics, smaller footprint, fast switching

Gate Driver with High Voltage Energy Storing (HVES)

- $V_{\rm HV}$ = 15V, $C_{\rm HV}$ = 0.6nF, $L_{\rm int}$ = 14nH \rightarrow 11nC gate charge \rightarrow fully integrated on IC
 - C_{HV} dominates \rightarrow faster turn-on:

$$f_{\rm res} \approx \frac{1}{2\pi \sqrt{L_{\rm par} \cdot C_{\rm HV}}}$$

Gate Driver with HVES – Toplevel

- Full-Bridge for bipolar and three-level driving and stable DC level
- HVES at gate and source for fast on / off transitions

Gate Driver IC with High Voltage Energy Storing (HVES)

Large Gate Loops

Faster, Higher, Monolithic – Efficient Energy Conversion with GaN · PwrSoC Corridor Webinar Series 2020 Bernhard Wicht · Leibniz University Hannover, Germany

Flexible Driver Placement: Large Gate Loop

Flexible Driver Placement: HVES Applied to Large Gate Loop

 Loop inductance utilized for resonant gate driving

IMS

Institute of Microelectronic Systems

Leibniz Universität Hannover

 Fully integrated solution with small C_{HV} in turn-on loop

PWR20 *i i i i* Leibniz Universität *i o o i* 4 Hannover

Gate Driver with HVES – Experimental Results

IMS

Institute of Microelectronic Systems Leibniz Universität Hannover

- HVES achieves 80% lower overshoot than conventional driver with similar rise time
- HVES achieves 45% shorter rise time than conventional driver with similar overshoot

100 ns / div

Kaufmann et al., CICC 2020 [4]

Gate Driver with HVES: Faster, Higher, Stronger

Miniaturization:

- Integrated buffer caps
- Use of parasitic Lloop

Low switching losses, high dVDS/dt:

 Fast switching due to small integrated high-voltage cap

Reliability and save operation:

- Bipolar / 3-Level gate drive for increased margin
- Low VGS overshoot with resonant driving

Monolithic GaN Integration

Faster, Higher, Monolithic – Efficient Energy Conversion with GaN · PwrSoC Corridor Webinar Series 2020 Bernhard Wicht · Leibniz University Hannover, Germany

Sanan IC

Monolithic GaN-ICs – Foundries / IDMs

unec

E ZAGAN

Accelerate Power Transition

intel

EPISIL

Faster, Higher, Monolithic – Efficient Energy Conversion with GaN · PwrSoC Corridor Webinar Series 2020 Bernhard Wicht · Leibniz University Hannover, Germany

Navitas

Systems

Sanan IC

Monolithic GaN-ICs – Foundries / IDMs and GaN Industry

EXAGAN

Accelerate Power Transition

intel

EPISIL

unec

ON

ON Semiconductor

Monolithic GaN Integration: Available Devices

SC20 *i i l i o* 2 *i o* 4 *i o* 4 *i o* 4 *i i l* Universität Hannover

IMS Institute of Microelectronic Systems Leibniz Universität Hannover

Monolithic GaN Integration: Opportunities and Challenges

- Monolithic integration: Gate loop inductance $\rightarrow 0$
- Tracks PVT variations of the driving voltage for the integrated GaN power device
- Limited device types and options, no p-type
- No diodes, neither designed nor parasitic
- Immature technology with poor matching properties

To be addressed on system and circuit level \rightarrow learning from the 1970ies

Monolithic GaN Integration: System Partitioning

Gate driver and power transistor in GaN:

Monolithic GaN Integration: System Partitioning

Full system in GaN:

Kaufmann et al., ISSCC 2020 [6], [7]

- Constant current output for LED load
- Hysteretic control:
 - Cycle-by-cycle peak current control
 - 2 Boundary conduction mode
- Asynchronous rectifier

Monolithic GaN Offline Buck Converter

 Gate driver and high voltage power HEMT

- Gate driver and high voltage power HEMT
- Peak current comparator with autozeroing

- Gate driver and high voltage power HEMT
- Peak current comparator with autozeroing
- Zero current detection for boundry conduction mode
- Max off timer for startup

- Gate driver and high voltage power HEMT
- Peak current comparator with autozeroing
- Zero current detection for boundry conduction mode
- Max off timer for startup
- HV supply regulator for selfbiased offline operation

Monolithic GaN Offline Buck Converter

650V GaN-on-Si

Faster, Higher, Monolithic – Efficient Energy Conversion with GaN · PwrSoC Corridor Webinar Series 2020 Bernhard Wicht · Leibniz University Hannover, Germany

10-50W Offline Converter Integration Trends

• 95.6% peak efficiency \rightarrow highest achieved with fully integrated power stage

• Low component count and small passives \rightarrow 44W/in³ power density

IMS

Conclusion

- GaN enables highly efficient and compact power conversion *BUT* gate driving is more challenging
- High-voltage energy storing (HVES) gate driver actively uses gate loop inductance for quick and robust resonant switching
- Monolithic integration with GaN eliminates gate loop parasitics and tracks PVT of the driving voltage for the GaN HV-HEMT

The presented GaN gate drivers and circuits show high levels of integration for compact and efficient high-voltage power supplies

References

- [1] Plikat, T. Leifert (VW), "Challenges for Power Devices in Electrified Drivetrains," ECPE Workshop Power Electronics for e-Mobility 2016
- [2] A. Seidel and B. Wicht, "25.3 A 1.3A gate driver for GaN with fully integrated gate charge buffer capacitor delivering 11nC enabled by highvoltage energy storing," ISSCC 2017
- [3] A. Seidel and B. Wicht, "A fully integrated three-level 11.6nC gate driver supporting GaN gate injection transistors," ISSCC 2018
- [4] M. Kaufmann, A. Seidel and B. Wicht, "Long, Short, Monolithic The Gate Loop Challenge for GaN Drivers: Invited Paper," CICC 2020
- [5] L. Xue and J. Zhang, "Active clamp flyback using GaN power IC for power adapter applications," APEC 2017
- [6] M. Kaufmann, M. Lueders, C. Kaya and B. Wicht, "18.2 A Monolithic E-Mode GaN 15W 400V Offline Self-Supplied Hysteretic Buck Converter with 95.6% Efficiency," ISSCC 2020
- [7] M. Kaufmann and B. Wicht, "A Monolithic GaN-IC With Integrated Control Loop for 400-V Offline Buck Operation Achieving 95.6% Peak Efficiency," JSSC 2020 (early access)
- [8] J. T. Hwang, et al., "A simple LED lamp driver IC with intelligent power-factor correction," ISSCC 2011
- [9] "Single-Stage LED Driver IC with Combined PFC and Constant Current Output for Buck Topology," LytSwitch1 Family Datasheet, Power Integrations, Jul. 2016
- [10] "Reference Design Report for a 40 W Power Supply Using InnoSwitch 3-Pro INN3377C-H301 and Microchip's PIC16F18325 Microcontroller," Power Integrations, Aug. 2018
- [11] S. Bandyopadhyay, et al., "90.6% efficient 11MHz 22W LED driver using GaN FETs and burstmode controller with 0.96 power factor," ISSCC 2013
- [12] E. Faraci, et al., "High efficiency and power density GaN-based LED driver," APEC 2016
- [13] "DER-917, 60 W Power Supply Using InnoSwitch[™]3-CP PowiGaN[™] INN3270C-H203," Power Integrations, Sep. 2020
- [14] L. Xue and J. Zhang, "Design considerations of highly-efficient active clamp flyback converter using GaN power ICs," APEC 2018